ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast phononic switching of magnetization

95   0   0.0 ( 0 )
 نشر من قبل Andrzej Stupakiewicz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying an efficient pathway to change the order parameter via a subtle excitation of the coupled high-frequency mode is the ultimate goal of the field of ultrafast phase transitions. This is an especially interesting research direction in magnetism, where the coupling between spin and lattice excitations is required for magnetization reversal. Despite several attempts however, the switching between magnetic states via resonant pumping of phonon modes has not yet been demonstrated. Here we show how an ultrafast resonant excitation of the longitudinal optical phonon modes in magnetic garnet films switches magnetization into a peculiar quadrupolar magnetic domain pattern, unambiguously revealing the magneto-elastic mechanism of the switching. In contrast, the excitation of strongly absorbing transverse phonon modes results in thermal demagnetization effect only.

قيم البحث

اقرأ أيضاً

Using time-resolved magneto-optical Kerr effect (TR-MOKE) method, helicity-dependent all-optical magnetization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. The thermal effect and opto-magneto effects are separately justified after si ngle circularly polarized laser pulse. The integral evolution of this ultrafast switching is characterized on different time scales and the defined magnetization reversal time of 460 fs is the fastest ever observed. Combining the heat effect and inverse Faraday effect (IFE), micromagnetic simulations based on a single macro-spin model are performed that reproduce HD-AOS following a linear reversal mechanism.
195 - M.A. Novotny , M. Kolesik , 1997
A model for single-domain uniaxial ferromagnetic particles with high anisotropy, the Ising model, is studied. Recent experimental observations have been made of the probability that the magnetization has not switched. Here an approach is described in which it is emphasized that a ferromagnetic particle in an unfavorable field is in fact a metastable system, and the switching is accomplished through the nucleation and subsequent growth of localized droplets. Nucleation theory is applied to finite systems to determine the coercivity as a function of particle size and to calculate the probability of not switching. Both of these quantities are modified by different boundary conditions, magnetostatic interactions, and quenched disorder.
152 - I. L. M. Locht 2014
We provide a model for the prediction of the electronic and magnetic configurations of ferromagnetic Fe after an ultrafast decrease or increase of magnetization. The model is based on the well-grounded assumption that, after the ultrafast magnetizati on change, the system achieves a partial thermal equilibrium. With statistical arguments it is possible to show that the magnetic configurations are qualitatively different in the case of reduced or increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response at the 3p (M) absorption edge, which can be related to the changes observed in the experimental T-MOKE data. The good qualitative agreement between theory and experiment offers a substantial support to the existence of an ultrafast increase of magnetisation, which has been fiercely debated in the last years.
We report the magnetic response of Au/GdFeCo bilayers to optical irradiation of the Au surface. For bilayers with Au thickness greater than 50 nm, the great majority of energy is absorbed by the Au electrons, creating an initial temperature different ial of thousands of Kelvin between the Au and GdFeCo layers. The resulting electronic heat currents between the Au and GdFeCo layers last for several picoseconds with energy flux in excess of 2 TW m-2, and provide sufficient heating to the GdFeCo electrons to induce deterministic reversal of the magnetic moment.
101 - T. Makino , F. Liu , T. Yamasaki 2012
All-optical pump-probe detection of magnetization precession has been performed for ferromagnetic EuO thin films at 10 K. We demonstrate that the circularly-polarized light can be used to control the magnetization precession on an ultrafast time scal e. This takes place within the 100 fs duration of a single laser pulse, through combined contribution from two nonthermal photomagnetic effects, i.e., enhancement of the magnetization and an inverse Faraday effect. From the magnetic field dependences of the frequency and the Gilbert damping parameter, the intrinsic Gilbert damping coefficient is evaluated to be {alpha} approx 3times10^-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا