ﻻ يوجد ملخص باللغة العربية
The bispectrum of single-field inflationary trajectories in which the speed of sound of the inflationary trajectories $c_s$ is constant but not equal to the speed of light $c=1$ is explored. The trajectories are generated as random realisations of the Hubble Slow-Roll (HSR) hierarchy and the bispectra are calculated using numerical techniques that extends previous work. This method allows for out-of-slow-roll models with non-trivial time dependence and arbitrarily low $c_s$. The ensembles obtained using this method yield distributions for the shape and scale-dependence of the bispectrum and their relations with the standard inflationary parameters such as scalar spectral tilt $n_s$ and tensor-to-scalar ratio $r$. The distributions demonstrate the squeezed-limit consistency relations for arbitrary single-field inflationary models.
We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution us
We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single--field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation
We examine the momentum dependence of the bispectrum of two-field inflationary models within the long-wavelength formalism. We determine the sources of scale dependence in the expression for the parameter of non-Gaussianity fNL and study two types of
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, inc
Massive fields during inflation provide an interesting opportunity to test new physics at very high energy scales. Meanwhile in fundamental realizations, the inflationary field space typically has a curved geometry, which may leave detectable imprint