ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating the Galactic Mass Profile in the Presence of Incomplete Data

115   0   0.0 ( 0 )
 نشر من قبل Gwendolyn Eadie
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A powerful method to measure the mass profile of a galaxy is through the velocities of tracer particles distributed through its halo. Transforming this kind of data accurately to a mass profile M(r), however, is not a trivial problem. In particular, limited or incomplete data may substantially affect the analysis. In this paper we develop a Bayesian method to deal with incomplete data effectively; we have a hybrid-Gibbs sampler that treats the unknown velocity components of tracers as parameters in the model. We explore the effectiveness of our model using simulated data, and then apply our method to the Milky Way using velocity and position data from globular clusters and dwarf galaxies. We find that in general, missing velocity components have little effect on the total mass estimate. However, the results are quite sensitive to the outer globular cluster Pal 3. Using a basic Hernquist model with an isotropic velocity dispersion, we obtain credible regions for the cumulative mass profile M(r) of the Milky Way, and provide estimates for the model parameters with 95 percent Bayesian credible intervals. The mass contained within 260 kpc is 1.37x10^12 solar masses, with a 95 percent credible interval of (1.27,1.51)x10^12 solar masses. The Hernquist parameters for the total mass and scale radius are 1.55 (+0.18/-0.13)x10^12 solar masses and 16.9 (+4.8/-4.1) kpc, where the uncertainties span the 95 percent credible intervals. The code we developed for this work, Galactic Mass Estimator (GME), will be available as an open source package in the R Project for Statistical Computing.

قيم البحث

اقرأ أيضاً

We present the first stellar density profile of the Milky Way bulge reaching latitude $b=0^circ$. It is derived by counting red clump stars within the colour--magnitude diagram constructed with the new PSF-fitting photometry from VISTA Variables in t he Vi a Lactea (VVV) survey data. The new stellar density map covers the area between $|l|leq 10^circ$ and $|b|leq 4.5^circ$ with unprecedented accuracy, allowing to establish a direct link between the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and the stellar mass density distribution. In particular, the location of the central velocity dispersion peak from GIBS matches a high overdensity in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and remnants of the Galactic bulge. The Milky Way bulge stellar mass within ($|b|<9.5^circ$, $|l|<10^circ$) is $2.0pm0.3times 10^{10}M_{odot}$.
We present an analysis of the mass distribution in the region of the Galactic bulge, which leads to constraints on the total amount and distribution of Dark Matter (DM) therein. Our results -based on the dynamical measurement of the BRAVA collaborati on- are quantitatively compatible with those of a recent analysis, and generalised to a vaste sample of observationally inferred morphologies of the stellar components in the region of the Galactic bulge. By fitting the inferred DM mass to a generalised NFW profile, we find that cores (index gamma smaller than 0.6) are forbidden only for very light configurations of the bulge, and that cusps (index gamma bigger than 1.2) are allowed, but not necessarily preferred. Interestingly, we find that the results for the bulge region are compatible with those obtained with dynamical methods (based on the rotation curve) applied to outer regions of the Milky Way, for all morphologies adopted. We find that the uncertainty on the shape of the stellar morphology heavily affects the determination of the DM distribution in the bulge region, which is gravitationally dominated by baryons, adding up to the uncertainty on its normalization. The combination of the two hinders the actual possibility to infer sound conclusions about the distribution of DM in the region of the Galactic bulge, and only future observations of the stellar census and dynamics in this region will bring us closer to a quantitatively more definite answer.
The lifetime of quasars can be estimated by means of their proximity zone sizes, which are regions of enhanced flux bluewards of the Lyman-$alpha$ emission line observed in the rest-frame UV spectra of high-redshift quasars, because the intergalactic gas has a finite response time to the quasars radiation. We estimate the effective lifetime of the high-redshift quasar population from the composite transmitted flux profile within the proximity zone region of a sample of $15$ quasars at $5.8leq zleq 6.6$ with precise systemic redshifts, and similar luminosities, i.e. $-27.6leq M_{1450}leq-26.4$, and thus a similar instantaneous ionizing power. We develop a Bayesian method to infer the effective lifetime from the composite spectrum, including robust estimates of various sources of uncertainty on the spectrum. We estimate an effective lifetime of the quasar population as a whole of $log_{10}(t_{Q}/{yr}) = 5.7^{+0.5 (+0.8)}_{-0.3 (-0.5)}$ given by the median and $68$th ($95$th) percentile of the posterior probability distribution. While our result is consistent with previous quasar lifetime studies, it poses significant challenges on the current model for the growth of supermassive black holes (SMBHs) located in the center of the quasars host galaxies, which requires that quasar lifetimes are more than an order of magnitude longer.
We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XDSS). The area we consider is located in the North Galactic Cap, covering 376.75 sq deg at RA $approx$ 150 deg and Dec $approx$ 27 deg down to a magnitude limit of i $approx$ 19. Using the variability information afforded by the multi-epoch nature of our XDSS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them and estimate the detection efficiency. The majority of our candidates have more than 12 observations and for these we are able to calculate periods. These also allows us to estimate our contamination level, which we predict is between 30% to 40%. Finally we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the South Galactic Cap using the Watkins et al. (2009) and Sesar et al. (2010) RRL data-sets, after accounting for possible contamination in our data-set from Sagittarius stream members. We consider non-spherical double power law models of the halo density profile and again find agreement with literature data-sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESAs astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material.
340 - John Magorrian 2018
We present a method for fitting orbit-superposition models to the kinematics of discrete stellar systems when the available stellar sample has been filtered by a known selection function. The fitting method can be applied to any model in which the di stribution function is represented as a linear superposition of basis elements with unknown weights. As an example, we apply it to Fritz et al.s kinematics of the innermost regions of the Milky Ways nuclear stellar cluster. Assuming spherical symmetry, our models fit a black hole of mass $M_bullet=(3.76pm0.22)times10^6,M_odot$, surrounded by an extended mass $M_star=(6.57pm0.54)times10^6,M_odot$ within 4 pc. Within 1 pc the best-fitting mass models have an approximate power-law density cusp $rhopropto r^{-gamma}$ with $gamma=1.3pm0.3$. We carry out an extensive investigation of how our modelling assumptions might bias these estimates: $M_bullet$ is the most robust parameter and $gamma$ the least. Internally the best-fitting models have broadly isotropic orbit distributions, apart from a bias towards circular orbits between 0.1 and 0.3 parsec.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا