ﻻ يوجد ملخص باللغة العربية
Above the Kondo temperature, the Kohn-Sham zero-bias conductance of an Anderson junction has been shown to completely miss the Coulomb blockade. Within a standard model for the spectral function, we deduce a parameterization for both the onsite exchange-correlation potential and the bias drop as a function of the site occupation that applies for all correlation strengths. We use our results to sow doubt on the common interpretation of such corrections as arising from dynamical exchange-correlation contributions.
We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating fractional quantum Hall edges at filling fraction $ u=2/3$. We consider a superconducting island with finite charging energy and investigate its effe
Accurate treatment of the electronic correlation in inhomogeneous electronic systems, combined with the ability to capture the correlation energy of the homogeneous electron gas, allows to reach high predictive power in the application of density-fun
Non-equilibrium Greens function techniques (NEGF) combined with Density Functional Theory (DFT) calculations have become a standard tool for the description of electron transport through single molecule nano-junctions in the coherent tunneling regime
An efficient density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity $Z = 3$ and antiferromagnetic exchange between nearest neighbor spins $s= 1/2$ or 1 sites in successive generations $g$. The algor
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular,