ترغب بنشر مسار تعليمي؟ اضغط هنا

Density functional description of Coulomb blockade: Adiabatic or dynamic exchange-correlation?

193   0   0.0 ( 0 )
 نشر من قبل Zhenfei Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Above the Kondo temperature, the Kohn-Sham zero-bias conductance of an Anderson junction has been shown to completely miss the Coulomb blockade. Within a standard model for the spectral function, we deduce a parameterization for both the onsite exchange-correlation potential and the bias drop as a function of the site occupation that applies for all correlation strengths. We use our results to sow doubt on the common interpretation of such corrections as arising from dynamical exchange-correlation contributions.



قيم البحث

اقرأ أيضاً

We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating fractional quantum Hall edges at filling fraction $ u=2/3$. We consider a superconducting island with finite charging energy and investigate its effe ct on transport through the device. We calculate conductance through such a system as a function of temperature and gate voltage applied to the superconducting island. We show that transport is strongly affected by the presence of parafermionic zero modes, leading at zero temperature to a zero-bias conductance quantized in units of $ u e^2/h$ independent of the applied gate voltage.
Accurate treatment of the electronic correlation in inhomogeneous electronic systems, combined with the ability to capture the correlation energy of the homogeneous electron gas, allows to reach high predictive power in the application of density-fun ctional theory. For two-dimensional systems we can achieve this goal by generalizing our previous approximation [Phys. Rev. B 79, 085316 (2009)] to a parameter-free form, which reproduces the correlation energy of the homogeneous gas while preserving the ability to deal with inhomogeneous systems. The resulting functional is shown to be very accurate for finite systems with an arbitrary number of electrons with respect to numerically exact reference data.
169 - R. Stadler , V. Geskin , J. Cornil 2008
Non-equilibrium Greens function techniques (NEGF) combined with Density Functional Theory (DFT) calculations have become a standard tool for the description of electron transport through single molecule nano-junctions in the coherent tunneling regime . However, the applicability of these methods for transport in the Coulomb blockade (CB) regime is still under debate. We present here NEGF-DFT calculations performed on simple model systems in the presence of an effective gate potential. The results show that: i) the CB addition energies can be predicted with such an approach with reasonable accuracy; ii) neither the magnitude of the Kohn-Sham gap nor the lack of a derivative discontinuity in the exchange-correlation functional represent a problem for this purpose.
An efficient density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity $Z = 3$ and antiferromagnetic exchange between nearest neighbor spins $s= 1/2$ or 1 sites in successive generations $g$. The algor ithm is accurate for $s = 1$ sites. The ground states are magnetic with spin $S(g) = 2^g s$, staggered magnetization that persists for large $g > 20$ and short-range spin correlation functions that decrease exponentially. A finite energy gap to $S > S(g)$ leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for $s$ = 1/2 and 1 are interpreted in terms of an analytical three-site model.
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا