ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Structure Formation in Decaying Dark Matter Models

72   0   0.0 ( 0 )
 نشر من قبل Dalong Cheng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $tau$ and recoil velocity $V_k$, and redshift. The fitting functions lead to accurate reconstruction of the the non-linear power transfer function of DDM to CDM in the framework of halo model. Using these results, we set constraints on the DDM parameter space by demanding that DDM does not induce larger suppression than the Lyman-$alpha$ constrained WDM models. We further generalize and constrain the DDM models to initial conditions with non-trivial mother fractions and show that the halo model predictions are still valid after considering a global decayed fraction. Finally, we point out that the DDM is unlikely to resolve the disagreement on cluster numbers between the Planck primary CMB prediction and the Sunyaev-Zeldovich (SZ) effect number count for $tau sim H_{0}^{-1}$.

قيم البحث

اقرأ أيضاً

We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutri nos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
344 - R. C. Batista , F. Pace 2013
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to $Lambda$CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on $delta_c$ parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to $Lambda$CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to $Lambda$CDM model than its homogeneous counterparts.
We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our unders tanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission will, in addition to the search for decaying Dark Matter, provide crucial insight into the nature of DM by studying the structure of the cosmic web. This will be done by searching for missing baryons in emission, and by using gamma-ray bursts as backlight to observe the warm-hot intergalactic media in absorption.
Dwarf spheroidal galaxies that form in halo substructures provide stringent constraints on dark matter annihilation. Many ultrafaint dwarfs discovered with modern surveys contribute significantly to these constraints. At present, because of the lack of abundant stellar kinematic data for the ultrafaints, non-informative prior assumptions are usually made for the parameters of the density profiles. Based on semi-analytic models of dark matter subhalos and their connection to satellite galaxies, we present more informative and realistic satellite priors. We show that our satellite priors lead to constraints on the annihilation rate that are between a factor of 2 and a factor of 7 weaker than under non-informative priors. As a result, the thermal relic cross section can at best only be excluded (with 95% probability) for dark matter masses of $lesssim 40$ GeV from dwarf spheroidal data, assuming annihilation into $bbar{b}$.
Scalar Field Dark Matter (SFDM) comprised of ultralight ($gtrsim 10^{-22}$ eV) bosons is an alternative to standard, collisionless Cold Dark Matter (CDM) that is CDM-like on large scales but inhibits small-scale structure formation. As a Bose-Einstei n condensate, its free-field (fuzzy) limit (FDM) suppresses structure below the de Broglie wavelength, $lambda_text{deB}$, creating virialized haloes with central cores of radius $simlambda_text{deB}$, surrounded by CDM-like envelopes, and a halo mass function (HMF) with a sharp cut-off on small scales. With a strong enough repulsive self-interaction (SI), structure is inhibited, instead, below the Thomas-Fermi (TF) radius, $R_text{TF}$ (the size of an SI-pressure-supported ($n=1$)-polytrope), when $R_text{TF} > lambda_text{deB}$. Previously, we developed tools to describe SFDM dynamics on scales above $lambda_text{deB}$ and showed that SFDM-TF haloes formed by Jeans-unstable collapse from non-cosmological initial conditions have $R_text{TF}$-sized cores, surrounded by CDM-like envelopes. Revisiting SFDM-TF in the cosmological context, we simulate halo formation by cosmological infall and collapse, and derive its transfer function from linear perturbation theory to produce cosmological initial conditions and predict statistical measures of structure formation, such as the HMF. Since FDM and SFDM-TF transfer functions both have small-scale cut-offs, we can align them to let observational constraints on FDM proxy for SFDM-TF, finding FDM with particle masses $1 lesssim m/(10^{-22} text{ eV}/c^2) lesssim 30$ corresponds to SFDM-TF with $10 gtrsim R_text{TF}/(1 text{ pc}) gtrsim 1$, favoring sub-galactic (sub-kpc) core-size. The SFDM-TF HMF cuts off gradually, however, leaving more small-mass haloes: its Jeans mass shrinks so fast, scales filtered early can still recover and grow!
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا