We present recent results of the NNPDF collaboration on a full DIS analysis of Parton Distribution Functions (PDFs). Our method is based on the idea of combining a Monte Carlo sampling of the probability measure in the space of PDFs with the use of neural networks as unbiased universal interpolating functions. The general structure of the project and the features of the fit are described and compared to those of the traditional approaches.
Over the past $sim!! 10$ years, the topic of the nucleons nonperturbative or $textit{intrinsic}$ charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF fitters. In thi
s talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the protons intrinsic charm component.
I review recent progress in the NNPDF global analyses of parton distributions (PDFs) focusing on developments contributing to its new upcoming release: NNPDF4.0. The NNPDF4.0 determination represents unprecedented progress in three main directions: i
) the systematic inclusion of LHC Run II data at 13 TeV and of new processes from dijets to single top distributions, ii) the deployment of state-of-the-art machine learning algorithms, from automated hyperparameter optimisation to stochastic gradient descent training; and iii) the complete statistical validation of PDF uncertainties, both in the data and extrapolation regions, by means of closure and future tests. Other methodological improvements in NNPDF4.0 include strict PDF positivity, integrability constraints at small-$x$, and deuteron and heavy nuclear corrections. I present representative results from NNPDF4.0 and assess its impact on open issues such as the light anti-quark asymmetry and the charm content of protons.
Many difficulties are encountered when attempting to pinpoint a common origin for several observed astrophysical anomalies, and when assessing their tension with existing exclusion limits. These include systematic uncertainties affecting the operatio
n of the detectors, our knowledge of their response, astrophysical uncertainties, and the broad range of particle couplings that can mediate interaction with a detector target. Particularly interesting astrophysical evidence has motivated a search for dark-photon, and focused our attention on a Hidden Valleys model with a GeV-scale dark sector that produces exciting signatures. Results from recent underground experiments are also considered. There is a `light hidden sector (dark sector), present in many models of new physics beyond the Standard Model, which contains a colorful spectrum of new particles. Recently, it has been shown that this spectrum can give rise to unique signatures at colliders when the mass scale in the hidden sector is well below a TeV; as in Hidden Valleys, Stueckelberg extensions, and Unparticle models. These physics models produce unique signatures of collimated leptons at high energies. By studying these ephemeral particles we hope to trace the history of the Universe. Our present theories lead us to believe that there is something new just around the corner, which should be accessible at the energies made available by modern colliders.
Recent progress and the latest results on the bulk thermodynamic properties of QCD matter from lattice are reviewed. In particular, I will stress upon the fact that lattice techniques are now entering into precision era where they can provide us with
new insights on even the microscopic degrees of freedom in different phases of QCD. I will discuss some instances, from the recent studies of topological fluctuations and screening masses. The progress towards understanding the effects of anomalous $U_A(1)$ symmetry on the chiral crossover transition and transport properties of QCD matter will also be discussed.
In 2009, the BESIII experiment has collected about 225M $jpsi$ and 106M $psip$ samples, both of which are the world largest on-peak charmonium production. Based on these dataset, BESIII has made great effort on the study of the charmonium decays, som
e important of which have been reviewed in this proceeding. In addition, a searching for new physics through the $CP/P$ violation process is reported.