ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental constraints on the coupling of the Higgs boson to electrons

156   0   0.0 ( 0 )
 نشر من قبل Joachim Brod
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the standard model (SM), the coupling of the Higgs boson to electrons is real and very small, proportional to the electron mass. New physics could significantly modify both real and imaginary parts of this coupling. We discuss experiments which are sensitive to the Higgs-electron coupling and derive the current bounds on new physics contributing to this coupling. The strongest constraint follows from the ACME bound on the electron electric dipole moment (EDM). We calculate the full analytic two-loop result for the electron EDM and show that it bounds the imaginary part of the Higgs-electron coupling to be less than 1.7 x 10^-2 times the SM electron Yukawa coupling. Deviations of the real part are much less constrained. We discuss bounds from Higgs decays, resonant Higgs production at electron colliders, Higgs mediated B -> e^+ e^- decays, and the anomalous magnetic moment of the electron. Currently, the strongest constraint comes from h -> e^+ e^- at the LHC, bounding the coupling to be less than ~600 times the SM Yukawa coupling. Important improvements can be expected from future EDM measurements as well as from resonant Higgs production at a next-generation high-luminosity e^+ e^- collider.

قيم البحث

اقرأ أيضاً

We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting the $gamma gamma,, ZZ^*,, WW^*, ,tau^+ tau^-$ and $bar{b} b$ decay channels and the double Higgs boson analyses in the $bbar{b}bbar{b}, , bbar{b}b tau^+ tau^-$ and $bbar{b}b gamma gamma$ decay channels, performed by the ATLAS collaboration. With the assumption that the new physics affects only the Higgs potential, values outside the interval $ -1.8, lambda_3^{rm SM} < lambda_3 < 9.2 , lambda_3^{rm SM}$ are excluded at $95%$ confidence level. With respect to similar analyses that do not include the information coming from the electroweak precision observables our analysis shows a stronger constraint on both positive and negative values of $lambda_3$.
Using the LHC and Tevatron data, we set upper and lower limits on the total width of the Higgs-like boson. The upper limit is based on the well-motivated assumption that the Higgs coupling to a W or Z pair is not much larger than in the Standard Mode l. These width limits allow us to convert the rate measurements into ranges for the Higgs couplings to various particles. A corollary of the upper limit on the total width is an upper limit on the branching fraction of exotic Higgs decays. Currently, this limit is 47% at the 95% CL if the electroweak symmetry is broken only by doublets.
We analyze the coupling of CP-even and CP-odd Higgs bosons to a photon and a Z boson in extensions of the Standard Model. In particular, we study in detail the effect of charged Higgs bosons in two-Higgs doublet models, and the contribution of SUSY p article loops in the minimal supersymmetric extension of the Standard Model. The Higgs-$gamma Z$ coupling can be measured in the decay $Z to gamma$+Higgs at $e^+e^-$ colliders running on the Z resonance, or in the reverse process Higgs $to Z gamma$ with the Higgs boson produced at LHC. We show that a measurement of this coupling with a precision at the percent level, which could be the case at future $e^+e^-$ colliders, would allow to distinguish between the lightest SUSY and standard Higgs bosons in large areas of the parameter space.
We analyze the contribution of the SUSY particles to the coupling of the lightest Higgs boson to two photons in supersymmetric theories. We discuss to what extent these contributions can be large enough to allow for a discrimination between the light est SUSY and the standard Higgs particles in the decoupling limit where all other Higgs bosons are very heavy and no supersymmetric particle has been discovered at future colliders. We find that only chargino and top squark loops can generate a sizeable difference between the standard and the SUSY Higgs-photon couplings. For masses above 250 GeV, the effect of chargino loops on the two-photon width is however smaller than $sim 10%$ in the entire SUSY parameter space. Top squarks heavier than 250 GeV can induce deviations larger than 10% only if their couplings to the Higgs boson are large. Since top squark contributions can be sizeable, we derive the two-loop QCD correction to squark loops and show that they are well under control.
79 - L.A. Popa , A. Caramete 2010
For a robust interpretation of upcoming observations from PLANCK and LHC experiments it is imperative to understand how the inflationary dynamics of a non-minimally coupled Higgs scalar field with gravity may affect the determination of the inflation ary observables. We make a full proper analysis of the WMAP7+SN+BAO dataset in the context of the non-minimally coupled Higgs inflation field with gravity. For the central value of the top quark pole mass m_T=171.3 GeV, the fit of the inflation model with non-minimally coupled Higgs scalar field leads to the Higgs boson mass between 143.7 and 167 GeV (95% CL). We show that the inflation driven by a non-minimally coupled scalar field to the Einstein gravity leads to significant constraints on the scalar spectral index and tensor-to-scalar ratio when compared with the similar constraints tensor to from the standard inflation with minimally coupled scalar field. We also show that an accurate reconstruction of the Higgs potential in terms of inflationary observables requires an improved accuracy of other parameters of the Standard Model of particle physics as the top quark mass and the effective QCD coupling constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا