ترغب بنشر مسار تعليمي؟ اضغط هنا

The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime

110   0   0.0 ( 0 )
 نشر من قبل A. Djouadi
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the contribution of the SUSY particles to the coupling of the lightest Higgs boson to two photons in supersymmetric theories. We discuss to what extent these contributions can be large enough to allow for a discrimination between the lightest SUSY and the standard Higgs particles in the decoupling limit where all other Higgs bosons are very heavy and no supersymmetric particle has been discovered at future colliders. We find that only chargino and top squark loops can generate a sizeable difference between the standard and the SUSY Higgs-photon couplings. For masses above 250 GeV, the effect of chargino loops on the two-photon width is however smaller than $sim 10%$ in the entire SUSY parameter space. Top squarks heavier than 250 GeV can induce deviations larger than 10% only if their couplings to the Higgs boson are large. Since top squark contributions can be sizeable, we derive the two-loop QCD correction to squark loops and show that they are well under control.


قيم البحث

اقرأ أيضاً

We discuss the computation of the Higgs boson decay amplitude to two photons through the W-loop using dispersion relations. The imaginary part of the form factor F_W(s) that parametrizes this decay is unambiguous in four dimensions. When it is used t o calculate the unsubtracted dispersion integral, the finite result for the form factor F_W(s) is obtained. However, the F_W(s) obtained in this way differs by a constant term from the result of a diagrammatic computation, based on dimensional regularization. It is easy to accommodate the missing constant by writing a once-subtracted dispersion relation for F_W(s) but it is unclear why the subtraction needs to be done. The goal of this paper is to investigate this question in detail. We show that the correct constant can be recovered within a dispersive approach in a number of ways that, however, either require an introduction of an ultraviolet regulator or unphysical degrees of freedom; unregulated and unsubtracted computations in the unitary gauge are insufficient, in spite of the fact that such computations give a finite result.
We present an analysis of the production and two-photon decay of the lightest CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM) at the Large Hadron Collider (LHC). A rather general model is considered, without supergravity const raints. All parameters of the model are taken into account, we especially study the dependence of the cross section on the squark masses, on the bilinear parameter $mu$ and the trilinear supersymmetry breaking parameter $A$. Non-zero values of these parameters lead to significant mixing in the squark sector, and, thus, affect the masses of Higgs bosons through radiative corrections, as well as their couplings to squarks. The cross section times the two-photon branching ratio of $h^0$ is of the order of 15--25~fb in much of the parameter space that remains after imposing the present experimental constraints on the parameters.
We compute the two-loop O(as*at) corrections to the Higgs boson masses in supersymmetric extensions of the Standard Model with Dirac gaugino masses. We rely on the effective-potential technique, allow for both Dirac and Majorana mass terms for the gl uinos, and compute the corrections in both the DRbar and on-shell renormalisation schemes. We give detailed results for the MDGSSM and the MRSSM, and simple approximate formulae valid in the decoupling limit for all currently-studied variants of supersymmetric models with Dirac gluinos. These results represent the first explicit two-loop calculation of Higgs boson masses in supersymmetric models beyond the MSSM and the NMSSM.
We develop a technique to present Higgs coupling measurements, which decouple the poorly defined theoretical uncertainties associated to inclusive and exclusive cross section predictions. The technique simplifies the combination of multiple measureme nts and can be used in a more general setting. We illustrate the approach with toy LHC Higgs coupling measurements and a collection of new physics models.
56 - Shingo Kiyoura 2001
We calculate the ratio of the two branching ratios, Br(h -> bb-bar) and Br(h -> cc-bar) + Br(h -> gg), in the minimal supersymmetric standard model taking into account the SUSY-loop corrections to the Higgs sector and the hbb-bar vertex. We show that the heavy Higgs mass can be extracted from the ratio, almost independently of other SUSY parameters, in the region of tan(beta) ~< 10.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا