ﻻ يوجد ملخص باللغة العربية
The original Pascaline was a mechanical calculator able to sum and subtract integers. It encodes information in the angles of mechanical wheels and through a set of gears, and aided by gravity, could perform the calculations. Here, we show that such a concept can be realized in electronics using memory elements such as memristive systems. By using memristive emulators we have demonstrated experimentally the memcomputing version of the mechanical Pascaline, capable of processing and storing the numerical results in the multiple levels of each memristive element. Our result is the first experimental demonstration of multidigit arithmetics with multi-level memory devices that further emphasizes the versatility and potential of memristive systems for future massively-parallel high-density computing architectures.
Digital memcomputing machines (DMMs) are a class of computational machines designed to solve combinatorial optimization problems. A practical realization of DMMs can be accomplished via electrical circuits of highly non-linear, point-dissipative dyna
In this work, we introduce the concept of an entirely new circuit architecture based on the novel, physics-inspired computing paradigm: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that can be designed leveraging prop
Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it is known, require efficient solution methods in
Featuring low heat dissipation, devices based on spin-wave logic gates promise to comply with increasing future requirements in information processing. In this work, we present the experimental realization of a majority gate based on the interference
The possibility of using non-deterministic circuit components has been gaining significant attention in recent years. The modeling and simulation of their circuits require novel approaches, as now the state of a circuit at an arbitrary moment in time