ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental prototype of a spin-wave majority gate

163   0   0.0 ( 0 )
 نشر من قبل Tobias Fischer
 تاريخ النشر 2016
والبحث باللغة English
 تأليف T. Fischer




اسأل ChatGPT حول البحث

Featuring low heat dissipation, devices based on spin-wave logic gates promise to comply with increasing future requirements in information processing. In this work, we present the experimental realization of a majority gate based on the interference of spin waves in an Yttrium-Iron-Garnet-based waveguiding structure. This logic device features a three-input combiner with the logic information encoded in the phase of the spin waves. We show that the phase of the output signal represents the majority of the phase of the input signals. A switching time of about 10 ns in the prototype device provides evidence for the ability of sub-nanosecond data processing in future down-scaled devices.

قيم البحث

اقرأ أيضاً

Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in hybrid spintronic devices with much lower operation power than conventional charge-based electronics. Their wave nature can be exploited in majority gates by using interference for computation. However, a scalable spin-wave majority gate that can be co-integrated alongside conventional electronics is still lacking. Here, we demonstrate a sub-micron inline spin-wave majority gate with fan-out. Time-resolved imaging of the magnetization dynamics by scanning transmission x-ray microscopy illustrates the device operation. All-electrical spin-wave spectroscopy further demonstrates majority gates with sub-micron dimensions, reconfigurable input and output ports, and frequency-division multiplexing. Challenges for hybrid spintronic computing systems based on spin-wave majority gates are discussed.
The design of a microstructured, fully functional spin-wave majority gate is presented and studied using micromagnetic simulations. This all-magnon logic gate consists of three-input waveguides, a spin-wave combiner and an output waveguide. In order to ensure the functionality of the device, the output waveguide is designed to perform spin-wave mode selection. We demonstrate that the gate evaluates the majority of the input signals coded into the spin-wave phase. Moreover, the all-magnon data processing device is used to perform logic AND-, OR-, NAND- and NOR- operations.
81 - Yang Lv , Robert P. Bloom , 2019
The recently proposed probabilistic spin logic presents promising solutions to novel computing applications. Multiple cases of implementations, including invertible logic gate, have been studied numerically by simulations. Here we report an experimen tal demonstration of a magnetic tunnel junction-based hardware implementation of probabilistic spin logic.
We report on the first experimental demonstration of majority logic operation using spin waves in a scaled device with an in-line input and output layout. The device operation is based on the interference of spin waves generated and detected by induc tive antennas in an all-electrical microwave circuit. We demonstrate the full truth table of a majority logic function with the ability to distinguish between strong and weak majority, as well as an inverted majority function by adjusting the operation frequency. Circuit performance projections predict low energy consumption of spin wave based compared to CMOS for large arithmetic circuits.
Understanding symmetry-breaking states of materials is a major challenge in the modern physical sciences. Quantum atmosphere proposed recently sheds light on the hidden world of these symmetry broken patterns. But the requirements for exquisite sensi tivity to the small shift and tremendous spatial resolution to local information pose huge obstacles to its experimental manifestation. In our experiment, we prepare time-reversal-symmetry conserved and broken quantum atmosphere of a single nuclear spin and successfully observe their symmetry properties. Our work proves in principle that finding symmetry patterns from quantum atmosphere is conceptually viable. It also opens up entirely new possibilities in the potential application of quantum sensing in material diagnosis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا