ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective dynamics of evanescently coupled excitable lasers with saturable absorber

296   0   0.0 ( 0 )
 نشر من قبل Marco Lamperti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a numerical study of the collective dynamics in a population of coupled excitable lasers with saturable absorber. At variance with previous studies where real-valued (lossy) coupling was considered, we focus here on the purely imaginary coupling (evanescent wave coupling). We show that evanescently coupled excitable lasers synchronize in a more efficient way compared to the lossy coupled ones. Furthermore we show that out-of-diagonal disorder-induced localization of excitability takes place for imaginary coupling too, but it can be frustrated by nonvanishing linewidth enhancement factor.



قيم البحث

اقرأ أيضاً

Based on self - consistent field theory we study a soliton generation in cw solid-state lasers with semiconductor saturable absorber. Various soliton destabilizations, i.e. the switch from femtosecond to picosecond generation (picosecond collapse), a n automodulation regime, breakdown of soliton generation and hysteresis behavior, are predicted.
We present an experimental and theoretical study of modal nonlinear dynamics in a specially designed dual-mode semiconductor Fabry-Perot laser with a saturable absorber. At zero bias applied to the absorber section, we have found that with increasing device current, single mode self-pulsations evolve into a complex dynamical state where the total intensity experiences regular bursts of pulsations on a constant background. Spectrally resolved measurements reveal that in this state the individual modes of the device can follow highly symmetric but oppositely directed spiralling orbits. Using a generalization of the rate equation description of a semiconductor laser with saturable absorption to the multimode case, we show that these orbits appear as a consequence of the interplay between the material dispersion in the gain and absorber sections of the laser. Our results provide insights into the factors that determine the stability of multimode states in these systems, and they can inform the development of semiconductor mode-locked lasers with tailored spectra.
It attracts wide interest to seek universe saturable absorber covering wavelengths from near infrared to mid-infrared band. Multilayer black phosphorus, with variable direct bandgap (0.3-2 eV) depending on the layer number, becomes a good alternative as a universe saturable absorber for pulsed lasers. In this contribution, we first experimentally demonstrated broadband saturable absorption of multilayer black phosphorus from 1 {mu}m to 2.7 {mu}m wavelength. With the as-fabricated black phosphorus nanoflakes as saturable absorber, stable Q-switching operation of bulk lasers at 1.03 {mu}m, 1.93 {mu}m, 2.72 {mu}m were realized, respectively. In contrast with large-bandgap semiconducting transition metal dichalcogenides, such as MoS2, MoSe2, multilayer black phosphorus shows particular advantage at the long wavelength regime thanks to its narrow direct bandgap. This work will open promising optoelectronic applications of black phosphorus in mid-infrared spectral region and further demonstrate that BP may fill the gap of between zero-bandgap graphene and large-bandgap TMDs.
We study extreme events occurring in the transverse $(x,y)$ section of the field emitted by a broad-area semiconductor laser with a saturable absorber. The spatio-temporal events on which we perform the statistical analysis are identified as maxima o f the field intensity in the 3D space $(x,y,t)$. We identify regions in the parameter space where extreme events are more likely to occur and we study the connection of those extreme events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.
We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower ex citation intensity compared to multilayer graphene, graphene with wrinkle-like defects, and functionalized graphene. Monolayer graphene has a remarkable large modulation depth of 95.3%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picoseconds ultrafast laser pulse (1.23 ps) can be generated using monolayer graphene as saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability and output energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا