ترغب بنشر مسار تعليمي؟ اضغط هنا

Tungsten spectroscopy in the EUV observed in SH-HtscEBIT

83   0   0.0 ( 0 )
 نشر من قبل Wenxian Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have recorded extreme ultraviolet spectra from $mathrm{W^{11+}}$ to $mathrm{W^{15+}}$ ions using a new flat field spectrometer installed at the Shanghai high temperature superconducting electron beam ion trap. The spectra were recorded at beam energies ranging between 200 eV and 400 eV and showed spectral lines/transition arrays in the 170 - 260 AA{} region. The charge states and spectra transitions were identified by comparison with calculations using a detailed relativistic configuration interaction method and collisional-radiative model, both incorporated in the Flexible Atomic Code. Atomic structure calculations showed that the dominant emission arises from $5d$ $rightarrow$ $5p$ and $5p$ $rightarrow$ $5s$ transitions. The work also identified the ground-state configuration of $W^{13+}$ as $4f^{13}5s^2$ both theoretically and experimentally.


قيم البحث

اقرأ أيضاً

162 - J. D. Gillaspy 2006
After a brief introduction to the NIST EBIT facility, we present the results of three different types of experiments that have been carried out there recently: EUV and visible spectroscopy in support of the microelectronics industry, laboratory astro physics using an x-ray microcalorimeter, and charge exchange studies using extracted beams of highly charged ions.
The variation in mean-square nuclear charge radius of xenon isotopes was measured utilizing a new method based on extreme ultraviolet spectroscopy of highly charged Na-like ions. The isotope shift of the Na-like D1 (3s $^{2}$S$_{1/2}$ - 3p $^2$P$_{1/ 2}$) transition between the $^{124}$Xe and $^{136}$Xe isotopes was experimentally determined using the electron beam ion trap facility at the National Institute of Standards and Technology. The mass shift and the field shift coefficients were calculated with enhanced precision by relativistic many-body perturbation theory and multi-configuration Dirac-Hartree-Fock method. The mean-square nuclear charge radius difference was found to be $delta<r^2>^{136, 124}$ = 0.269(0.042) fm$^2$. Our result has smaller uncertainty than previous experimental results and agrees with the recommended value by Angeli and Marinova [I. Angeli and K. P. Marinova, At. Data and Nucl. Data Tables {bf 99}, 69-95 (2013)].
257 - W. Li , J. Xiao , Z. Shi 2015
Three visible lines of M1 transitions from In-like W were recorded using the Shanghai permanent magnet electron beam ion trap. The experimental wavelengths were measured as 493.84 $pm$ 0.15, 226.97 $pm$ 0.13 and 587.63 $pm$ 0.23 nm (vacuum wavelength s). These results are in good agreement with theoretical predictions obtained using large-scale Relativistic Many-Body Perturbation Theory, in the form of the Flexible Atomic Code.
39 - P. Maltby 1998
Bright EUV sunspot plumes have been observed in five out of nine sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. In the other four regions the brightest line emissions may appear inside the sunspot but are mainly concentrated in small regions outside the sunspot areas. These results are in contrast to those obtained during the Solar Maximum Mission, but are compatible with the Skylab mission results. The present observations show that sunspot plumes are formed in the upper part of the transition region, occur both in magnetic unipolar-- and bipolar regions, and may extend from the umbra into the penumbra.
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with format ion temperatures between log(T)=4.7-6.3, as well as their integrated intensities, are given. The line profiles are discussed. We pay special attention to the He II line which is blended with coronal lines. Our analysis confirms that depression in EUV lines can be interpreted by two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He II line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking on the coronal lines blended with the He II line. We estimate the contribution of the He II 256.32 line in the He II raster image to vary between ~44% and 70% of the rasters total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He II line are consistent with theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate for the central temperature of 8700 K, central pressure of 0.33 dyn/cm^2, and column mass of 2.5 10^{-4} g/cm^2. The corresponding theoretical hydrogen column density (10^{20} cm^{-2}) is about two orders of magnitude higher than those inferred from the opacity estimates at 195 {AA}. The non-LTE calculations indicate that the He II 256.32 {AA} line is essentially formed in the prominence-to-corona transition region by resonant scattering of the incident radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا