ﻻ يوجد ملخص باللغة العربية
The $B^{-}to D^{+}K^{-}pi^{-}$ decay is observed in a data sample corresponding to $3.0~rm{fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be ${cal B}(B^{-}to D^{+}K^{-}pi^{-}) = (7.31 pm 0.19 pm 0.22 pm 0.39) times 10^{-5}$ where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel $B^{-}to D^{+}pi^{-}pi^{-}$, respectively. An amplitude analysis of the resonant structure of the $B^{-}to D^{+}K^{-}pi^{-}$ decay is used to measure the contributions from quasi-two-body $B^{-}to D_{0}^{*}(2400)^{0}K^{-}$, $B^{-}to D_{2}^{*}(2460)^{0}K^{-}$, and $B^{-}to D_{J}^{*}(2760)^{0}K^{-}$ decays, as well as from nonresonant sources. The $D_{J}^{*}(2760)^{0}$ resonance is determined to have spin~1.
The $B^{+}to D^{+} K^{+} pi^{-}$ decay is observed in a data sample corresponding to $3.0,{rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. The signal significance is $8,sigma$ and the branching fraction is me
Results are reported from an amplitude analysis of the $B^+to D^+D^-K^+$ decay. The analysis is carried out using LHCb proton-proton collision data taken at $sqrt{s}=7,8,$ and $13$ TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$. I
The $B^+ to D^{*-}K^+pi^+$ decay potentially provides an excellent way to investigate charm meson spectroscopy. The decay is searched for in a sample of proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and
The time-integrated Dalitz plot of the three-body hadronic charmless decay ${{overline{B}}^0 to K_{mathrm{scriptscriptstyle S}}^0 pi^+ pi^-}$ is studied using a $pp$ collision data sample recorded with the LHCb detector, corresponding to an integrate
The first observation of the decay $B^0 rightarrow D^0 overline{D}{}^0 K^+ pi^-$ is reported using proton-proton collision data corresponding to an integrated luminosity of 4.7 $mathrm{fb}^{-1}$ collected by the LHCb experiment in 2011, 2012 and 2016