ﻻ يوجد ملخص باللغة العربية
We investigate few body physics in a cold atomic system with synthetic dimensions (Celi et al., PRL 112, 043001 (2014)) which realizes a Hofstadter model with long-ranged interactions along the synthetic dimension. We show that the problem can be mapped to a system of particles (with $SU(M)$ symmetric interactions) which experience an $SU(M)$ Zeeman field at each lattice site {em and} a non-Abelian $SU(M)$ gauge potential that affects their hopping from one site to another. This mapping brings out the possibility of generating {em non-local} interactions (interaction between particles at different physical sites). It also shows that the non-Abelian gauge field, which induces a flavor-orbital coupling, mitigates the baryon breaking effects of the Zeeman field. For $M$ particles, the $SU(M)$ singlet baryon which is site localized, is deformed to be a nonlocal object (squished baryon) by the combination of the Zeeman and the non-Abelian gauge potential, an effect that we conclusively demonstrate by analytical arguments and exact (numerical) diagonalization studies. These results not only promise a rich phase diagram in the many body setting, but also suggests possibility of using cold atom systems to address problems that are inconceivable in traditional condensed matter systems. As an example, we show that the system can be adapted to realize Hamiltonians akin to the $SU(M)$ random flux model.
The non-Abelian gauge fields play a key role in achieving novel quantum phenomena in condensed-matter and high-energy physics. Recently, the synthetic non-Abelian gauge fields have been created in the neutral degenerate Fermi gases, and moreover, gen
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical w
According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), th
We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the spinor multidimensional nonlinear Schr{o}dinger equation. Focusing on the two-dimensional case, we show that when gauge field can be split in
We study collective modes of vortex lattices in two-component Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. By means of the Bogoliubov theory with the lowest-Landau-level approximation