ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Benchmarks for Precision Particle Tracking in Electric and Magnetic Rings

50   0   0.0 ( 0 )
 نشر من قبل Yannis K. Semertzidis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A set of analytical benchmarks for tracking programs is required for precision storage ring experiments. To determine the accuracy of precision tracking programs in electric and magnetic rings, a variety of analytical estimates of particle and spin dynamics in the rings were developed and compared to the numerical results of tracking simulations. Initial discrepancies in the comparisons indicated the need for improvement of several of the analytical estimates. As an example, we found that the fourth-order Runge-Kutta/Predictor-Corrector method was slow but accurate, and that it passed all the benchmarks it was tested against, often to the sub-part per billion level. Thus, high precision analytical estimates and tracking programs based on fourth-order Runge-Kutta/Predictor-Corrector integration can be used to benchmark faster tracking programs for accuracy.



قيم البحث

اقرأ أيضاً

We derive a power series representation of an arbitrary electromagnetic field near some axis through the coaxial field components on the axis. The obtained equations are compared with Fourier-Bessel series approach and verified by several examples. I t is shown that for each azimuthal mode we need only two real functions on the axis in order to describe the field in a source free region near to it. The representation of dipole mode in a superconducting radio-frequency gun is analyzed.
A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune - defined as the number of spin precessions per turn - is given by $ u_s = gamma G$ (gamma is the Lorentz factor, $G$ the magnetic anomal y). For 970 MeV/c deuterons coherently precessing with a frequency of ~120 kHz in the Cooler Synchrotron COSY, the spin tune is deduced from the up-down asymmetry of deuteron carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the order $10^{-8}$, and to $1 cdot 10^{-10}$ for a continuous 100 s accelerator cycle. This renders the presented method a new precision tool for accelerator physics: controlling the spin motion of particles to high precision is mandatory, in particular, for the measurement of electric dipole moments of charged particles in a storage ring.
In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.
We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM$_{110}$ mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures.
137 - Yuri F. Orlov 2006
A resonance method of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا