ﻻ يوجد ملخص باللغة العربية
We present $^{75}$As nuclear magnetic resonance spin-lattice and spin-spin relaxation rate data in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ as a function of temperature, doping and magnetic field. The relaxation curves exhibit a broad distribution of relaxation rates, consistent with inhomogeneous glassy behavior up to 100 K. The doping and temperature response of the width of the dynamical heterogeneity is similar to that of the nematic susceptibility measured by elastoresistance measurements. We argue that quenched random fields which couple to the nematic order give rise to a nematic glass that is reflected in the spin dynamics.
We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe$_2$As$_2$ single crystals. Both the $^{75}$As and $^{31}$P sites exhibit stretched-exponential relaxation similar to the electron-
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges onl
Nematic fluctuations occur in a wide range of physical systems from liquid crystals to biological molecules to solids such as exotic magnets, cuprates and iron-based high-$T_c$ superconductors. Nematic fluctuations are thought to be closely linked to
The role of nematic fluctuations in the pairing mechanism of iron-based superconductors is frequently debated. Here we present a novel method to reveal such fluctuations by identifying energy and momentum of the corresponding nematic boson through th
The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign betwe