ﻻ يوجد ملخص باللغة العربية
We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe$_2$As$_2$ single crystals. Both the $^{75}$As and $^{31}$P sites exhibit stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a universal phenomenon in the iron-based superconductors.
An instrumentation problem with the signal acquisition at high frequencies was discovered and we no longer believe that the experimental data presented in the manuscript, showing a frequency enhancement of the elastoresistivity, are correct. After co
We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe$_{2-x}$Ni$_x$As$_2$ by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be iden
Theories of the strange metal, the parent state of many high temperature superconductors, invariably involve an important role for correlations in the spin and charge degrees of freedom. The most distinctive signature of this state in the charge tran
The electric field gradient (EFG) tensor at the $^{75}$As site couples to the orbital occupations of the As p-orbitals and is a sensitive probe of local nematicity in BaFe$_2$As$_2$. We use nuclear magnetic resonance to measure the nuclear quadrupola
The scaling of $H$-linear magnetoresistance in field and temperature was measured in under-doped (x = 0.19) and optimally-doped (x=0.31)~BaFe$_2$(As$_{1-x}$P$_x$)$_2$. We analyze the data based on an orbital model in the presence of strongly anisotro