ترغب بنشر مسار تعليمي؟ اضغط هنا

EmoNets: Multimodal deep learning approaches for emotion recognition in video

418   0   0.0 ( 0 )
 نشر من قبل Samira Ebrahimi Kahou
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches which consider combinations of features from multiple modalities for label assignment. In this paper we present our approach to learning several specialist models using deep learning techniques, each focusing on one modality. Among these are a convolutional neural network, focusing on capturing visual information in detected faces, a deep belief net focusing on the representation of the audio stream, a K-Means based bag-of-mouths model, which extracts visual features around the mouth region and a relational autoencoder, which addresses spatio-temporal aspects of videos. We explore multiple methods for the combination of cues from these modalities into one common classifier. This achieves a considerably greater accuracy than predictions from our strongest single-modality classifier. Our method was the winning submission in the 2013 EmotiW challenge and achieved a test set accuracy of 47.67% on the 2014 dataset.



قيم البحث

اقرأ أيضاً

Multimodal signals are more powerful than unimodal data for emotion recognition since they can represent emotions more comprehensively. In this paper, we introduce deep canonical correlation analysis (DCCA) to multimodal emotion recognition. The basi c idea behind DCCA is to transform each modality separately and coordinate different modalities into a hyperspace by using specified canonical correlation analysis constraints. We evaluate the performance of DCCA on five multimodal datasets: the SEED, SEED-IV, SEED-V, DEAP, and DREAMER datasets. Our experimental results demonstrate that DCCA achieves state-of-the-art recognition accuracy rates on all five datasets: 94.58% on the SEED dataset, 87.45% on the SEED-IV dataset, 84.33% and 85.62% for two binary classification tasks and 88.51% for a four-category classification task on the DEAP dataset, 83.08% on the SEED-V dataset, and 88.99%, 90.57%, and 90.67% for three binary classification tasks on the DREAMER dataset. We also compare the noise robustness of DCCA with that of existing methods when adding various amounts of noise to the SEED-V dataset. The experimental results indicate that DCCA has greater robustness. By visualizing feature distributions with t-SNE and calculating the mutual information between different modalities before and after using DCCA, we find that the features transformed by DCCA from different modalities are more homogeneous and discriminative across emotions.
Many mobile applications and virtual conversational agents now aim to recognize and adapt to emotions. To enable this, data are transmitted from users devices and stored on central servers. Yet, these data contain sensitive information that could be used by mobile applications without users consent or, maliciously, by an eavesdropping adversary. In this work, we show how multimodal representations trained for a primary task, here emotion recognition, can unintentionally leak demographic information, which could override a selected opt-out option by the user. We analyze how this leakage differs in representations obtained from textual, acoustic, and multimodal data. We use an adversarial learning paradigm to unlearn the private information present in a representation and investigate the effect of varying the strength of the adversarial component on the primary task and on the privacy metric, defined here as the inability of an attacker to predict specific demographic information. We evaluate this paradigm on multiple datasets and show that we can improve the privacy metric while not significantly impacting the performance on the primary task. To the best of our knowledge, this is the first work to analyze how the privacy metric differs across modalities and how multiple privacy concerns can be tackled while still maintaining performance on emotion recognition.
Various psychological factors affect how individuals express emotions. Yet, when we collect data intended for use in building emotion recognition systems, we often try to do so by creating paradigms that are designed just with a focus on eliciting em otional behavior. Algorithms trained with these types of data are unlikely to function outside of controlled environments because our emotions naturally change as a function of these other factors. In this work, we study how the multimodal expressions of emotion change when an individual is under varying levels of stress. We hypothesize that stress produces modulations that can hide the true underlying emotions of individuals and that we can make emotion recognition algorithms more generalizable by controlling for variations in stress. To this end, we use adversarial networks to decorrelate stress modulations from emotion representations. We study how stress alters acoustic and lexical emotional predictions, paying special attention to how modulations due to stress affect the transferability of learned emotion recognition models across domains. Our results show that stress is indeed encoded in trained emotion classifiers and that this encoding varies across levels of emotions and across the lexical and acoustic modalities. Our results also show that emotion recognition models that control for stress during training have better generalizability when applied to new domains, compared to models that do not control for stress during training. We conclude that is is necessary to consider the effect of extraneous psychological factors when building and testing emotion recognition models.
Despite the recent achievements made in the multi-modal emotion recognition task, two problems still exist and have not been well investigated: 1) the relationship between different emotion categories are not utilized, which leads to sub-optimal perf ormance; and 2) current models fail to cope well with low-resource emotions, especially for unseen emotions. In this paper, we propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues. We use pre-trained word embeddings to represent emotion categories for textual data. Then, two mapping functions are learned to transfer these embeddings into visual and acoustic spaces. For each modality, the model calculates the representation distance between the input sequence and target emotions and makes predictions based on the distances. By doing so, our model can directly adapt to the unseen emotions in any modality since we have their pre-trained embeddings and modality mapping functions. Experiments show that our model achieves state-of-the-art performance on most of the emotion categories. In addition, our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
Many paralinguistic tasks are closely related and thus representations learned in one domain can be leveraged for another. In this paper, we investigate how knowledge can be transferred between three paralinguistic tasks: speaker, emotion, and gender recognition. Further, we extend this problem to cross-dataset tasks, asking how knowledge captured in one emotion dataset can be transferred to another. We focus on progressive neural networks and compare these networks to the conventional deep learning method of pre-training and fine-tuning. Progressive neural networks provide a way to transfer knowledge and avoid the forgetting effect present when pre-training neural networks on different tasks. Our experiments demonstrate that: (1) emotion recognition can benefit from using representations originally learned for different paralinguistic tasks and (2) transfer learning can effectively leverage additional datasets to improve the performance of emotion recognition systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا