ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs shifts from electron-positron annihilations near neutron stars

37   0   0.0 ( 0 )
 نشر من قبل Roberto Onofrio
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the potential for using neutron stars to determine bounds on the Higgs-Kretschmann coupling by looking at peculiar shifts in gamma-ray spectroscopic features. In particular, we reanalyse multiple lines observed in GRB781119 detected by two gamma-ray spectrometers, and derive an upper bound on the Higgs-Kretschmann coupling that is much more constraining than the one recently obtained from white dwarfs. This calls for targeted analyses of spectra of gamma-ray bursts from more recent observatories, dedicated searches for differential shifts on electron-positron and proton-antiproton annihilation spectra in proximity of compact sources, and signals of electron and proton cyclotron lines from the same neutron star.

قيم البحث

اقرأ أيضاً

We study the azimuthal distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $gamma$-ray, proton and iron primaries of different energies incident at various zenith angles over a high altitude observation level. The azimutha l distributions of electrons and positrons along with their asymmetric behaviour have also been studied here to understand the feature of azimuthal distributions of Cherenkov photons in EASs. The main motivation behind this study is to see whether the azimuthal distribution of Cherenkov photons can provide any means to distinguish the $gamma$-ray initiated showers from that of hadron initiated showers in the ground based $gamma$-ray astronomy experiment. Apart from this, such study is also important to understand the natures of $gamma$-ray and hadronic showers in general. We have used the CORSIKA 6.990 simulation package for generating the showers. The study shows the double peak nature of the azimuthal distribution of Cherenkov photons which is due to the separation of electron and positrons in the azimuthal plane. The pattern of distribution is more sensitive for the energy of the primary particle than its angle of incidence. There is no significant difference between distributions for $gamma$-ray and handron initiated showers.
In this paper, we explore the possibility of a linearly polarized gamma-ray signal from dark matter annihilations in the Galactic center. Considering neutral weakly interacting massive particles, a polarized gamma-ray signal can be realized by a two- component dark matter model of Majorana fermions with an anapole moment. We discuss the spin alignment of such dark matter fermions in the Galactic center and then estimate the intensity and the polarizability of the final-state electromagnetic radiation in the dark matter annihilations. For low-mass dark matter, the photon flux at sub-GeV energies may be polarized at a level detectable in current X-ray polarimeters. Depending on the mass ratio between the final-state fermion and DM, the degree of polarization at the mass threshold can reach $70%$ or even higher, providing us with a new tool for probing the nature of dark matter in future gamma-ray polarization experiments.
We study the stability against infinitesimal radial oscillations of neutron stars generated by a set of equations of state obtained from first-principle calculations in cold and dense QCD and constrained by observational data. We consider mild and la rge violations of the conformal bound, $c_{s} = 1/sqrt{3}$, in stars that can possibly contain a quark matter core. Some neutron star families in the mass-radius diagram become dynamically unstable due to large oscillation amplitudes near the core.
Massive-star binaries can undergo a phase where one of the two stars expands during its advanced evolutionary stage as a giant and envelops its companion, ejecting the hydrogen envelope and tightening its orbit. Such a common envelope phase is requir ed to tighten the binary orbit in the formation of many of the observed X-ray binaries and merging compact binary systems. In the formation scenario for neutron star binaries, the system might pass through a phase where a neutron star spirals into the envelope of its giant star companion. These phases lead to mass accretion onto the neutron star. Accretion onto these common-envelope-phase neutron stars can eject matter that has undergone burning near to the neutron star surface. This paper presents nucleosynthetic yields of this ejected matter, using population synthesis models to study the importance of these nucleosynthetic yields in a galactic chemical evolution context. Depending on the extreme conditions in temperature and density found in the accreted material, both proton-rich and neutron-rich nucleosynthesis can be obtained, with efficient production of neutron rich isotopes of low Z material at the most extreme conditions, and proton rich isotopes, again at low Z, in lower density models. Final yields are found to be extremely sensitive to the physical modeling of the accretion phase. We show that neutron stars accreting in binary common envelopes might be a new relevant site for galactic chemical evolution, and therefore more comprehensive studies are needed to better constrain nucleosynthesis in these objects.
65 - Dany Page 2009
The minimal cooling paradigm for neutron star cooling assumes that enhanced cooling due to neutrino emission from any direct Urca process, due either to nucleons or to exotica such as hyperons, Bose condensates, or deconfined quarks, does not occur. This scenario was developed to replace and extend the so-called standard cooling scenario to include neutrino emission from the Cooper pair breaking and formation processes that occur near the critical temperature for superfluid/superconductor pairing. Recently, it has been found that Cooper-pair neutrino emission from the vector channel is suppressed by a large factor compared to the original estimates that violated vector current conservation. We show that Cooper-pair neutrino emission remains, nevertheless, an efficient cooling mechanism through the axial channel. As a result, the elimination of neutrino emission from Cooper-paired nucleons through the vector channel has only minor effects on the long-term cooling of neutron stars within the minimal cooling paradigm. We further quantify precisely the effect of the size of the neutron 3P2 gap and demonstrate that consistency between observations and the minimal cooling paradigm requires that the critical temperature T_c for this gap covers a range of values between T_c^min < 0.2 x 10^9 K up to T_c^max > 0.5 times 10^9 K in the core of the star. In addition, it is required that young neutron stars have heterogenous envelope compositions: some must have light-element compositions and others must have heavy-element compositions. Unless these two conditions are fulfilled, about half of the observed young cooling neutron stars are inconsistent with the minimal cooling paradigm and provide evidence for the existence of enhanced cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا