ﻻ يوجد ملخص باللغة العربية
Subspace clustering (SC) is a popular method for dimensionality reduction of high-dimensional data, where it generalizes Principal Component Analysis (PCA). Recently, several methods have been proposed to enhance the robustness of PCA and SC, while most of them are computationally very expensive, in particular, for high dimensional large-scale data. In this paper, we develop much faster iterative algorithms for SC, incorporating robustness using a {em non-squared} $ell_2$-norm objective. The known implementations for optimizing the objective would be costly due to the alternative optimization of two separate objectives: optimal cluster-membership assignment and robust subspace selection, while the substitution of one process to a faster surrogate can cause failure in convergence. To address the issue, we use a simplified procedure requiring efficient matrix-vector multiplications for subspace update instead of solving an expensive eigenvector problem at each iteration, in addition to release nested robust PCA loops. We prove that the proposed algorithm monotonically converges to a local minimum with approximation guarantees, e.g., it achieves 2-approximation for the robust PCA objective. In our experiments, the proposed algorithm is shown to converge at an order of magnitude faster than known algorithms optimizing the same objective, and have outperforms prior subspace clustering methods in accuracy and running time for MNIST dataset.
Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in
Massive sizes of real-world graphs, such as social networks and web graph, impose serious challenges to process and perform analytics on them. These issues can be resolved by working on a small summary of the graph instead . A summary is a compressed
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini
Given a dataset and an existing clustering as input, alternative clustering aims to find an alternative partition. One of the state-of-the-art approaches is Kernel Dimension Alternative Clustering (KDAC). We propose a novel Iterative Spectral Method
Deep Subspace Clustering Networks (DSC) provide an efficient solution to the problem of unsupervised subspace clustering by using an undercomplete deep auto-encoder with a fully-connected layer to exploit the self expressiveness property. This method