ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional Analytical Description of Magnetised Winds from Oblique Pulsars

455   0   0.0 ( 0 )
 نشر من قبل Alexander Tchekhovskoy
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rotating neutron stars, or pulsars, are plausibly the source of power behind many astrophysical systems, such as gamma-ray bursts, supernovae, pulsar wind nebulae and supernova remnants. In the past several years, 3D numerical simulations made it possible to compute pulsar spindown luminosity from first principles and revealed that oblique pulsar winds are more powerful than aligned ones. However, what causes this enhanced power output of oblique pulsars is not understood. In this work, using time-dependent 3D magnetohydrodynamic (MHD) and force-free simulations, we show that, contrary to the standard paradigm, the open magnetic flux, which carries the energy away from the pulsar, is laterally non-uniform. We argue that this non-uniformity is the primary reason for the increased luminosity of oblique pulsars. To demonstrate this, we construct simple analytic descriptions of aligned and orthogonal pulsar winds and combine them to obtain an accurate 3D description of the pulsar wind for any obliquity. Our approach describes both the warped magnetospheric current sheet and the smooth variation of pulsar wind properties outside of it. We find that generically the magnetospheric current sheet separates plasmas that move at mildly relativistic velocities relative to each other. This suggests that the magnetospheric reconnection is a type of driven, rather than free, reconnection. The jump in magnetic field components across the current sheet decreases with increasing obliquity, which could be a mechanism that reduces dissipation in near-orthogonal pulsars. Our analytical description of the pulsar wind can be used for constructing models of pulsar gamma-ray emission, pulsar wind nebulae, and magnetar-powered core-collapse gamma-ray bursts and supernovae.



قيم البحث

اقرأ أيضاً

We present first-principles relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are acceler ated by surface electric fields and emit photons capable of producing electron-positron pairs. We inject secondary pairs at locations of primary energetic particles, whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere, with the Y-point and current sheet. Solutions with obliquities $lt 40^{circ}$ do not show pair production in the open field line region, because the local current density along magnetic field is below the Goldreich-Julian value. The bulk outflow in these solutions is charge separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved space-time or multipolar surface fields.
We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during re-processing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546-5925) has a spin period $P=7.8$ ms and is isolated. The other two (PSR J0921-5202 with $P=9.7$ ms and PSR J1146-6610 with $P=3.7$ ms) are in binary systems around low-mass ($>0.2 M_{odot}$) companions. Their respective orbital periods are $38$.2 d and $62.8$ d. While PSR J0921-5202 has a low orbital eccentricity $e=1.3 times 10^{-5}$, in keeping with many other Galactic MSPs, PSR J1146-6610 has a significantly larger eccentricity, $e = 7.4 times 10^{-3}$. This makes it a likely member of a group of eccentric MSP-He white dwarf binary systems in the Galactic disk whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellites Large Area Telescope, but no $gamma$-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.
We perform first-principles relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitat e pair production. As pair plasma supply increases, we observe the transition from a charge-separated electrosphere solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically-dominated pulsar wind. We calculate the magnetospheric structure, current distribution and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.
The current state of the art in pulsar magnetosphere modeling assumes the force-free limit of magnetospheric plasma. This limit retains only partial information about plasma velocity and neglects plasma inertia and temperature. We carried out time-de pendent 3D relativistic magnetohydrodynamic (MHD) simulations of oblique pulsar magnetospheres that improve upon force-free by retaining the full plasma velocity information and capturing plasma heating in strong current layers. We find rather low levels of magnetospheric dissipation, with less than 10% of pulsar spindown energy dissipated within a few light cylinder radii, and the MHD spindown that is consistent with that in force-free. While oblique magnetospheres are qualitatively similar to the rotating split-monopole force-free solution at large radii, we find substantial quantitative differences with the split-monopole, e.g., the luminosity of the pulsar wind is more equatorially concentrated than the split-monopole at high obliquities, and the flow velocity is modified by the emergence of reconnection flow directed into the current sheet.
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Ga lactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا