ترغب بنشر مسار تعليمي؟ اضغط هنا

Ram Pressure Stripping of Hot Coronal Gas from Group and Cluster Galaxies and the Detectability of Surviving X-ray Coronae

175   0   0.0 ( 0 )
 نشر من قبل Rukmani Vijayaraghavan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium (ICM), as shown by observations of X-ray and HI galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that $sim 1 - 4$ kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centers. We find that coronal emission should be detected within $sim 10$ arcsec, or $sim 5$ kpc up to $sim 2.3$ Gyr in the lowest (0.1 - 1.2 keV) energy band. Thus the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray halos of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogs can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.



قيم البحث

اقرأ أيضاً

The hot intracluster/intragroup medium (ICM/IGM) and a high galaxy density can lead to perturbations of the galactic interstellar medium (ISM) due to ram pressure and/or tidal interaction effects. In radio polarimetry observations, both phenomena may manifest similar features. X-ray data can help to determine the real origin of the perturbation. We analyse the distribution and physical properties of the hot gas in the Virgo cluster spiral galaxies NGC 4254 and NGC 4569, which indicate that the cluster environment has had a significant influence on their properties. By performing both spatial and spectral analyses of X-ray data, we try to distinguish between two major phenomena: tidal and ram pressure interactions. We compare our findings with the case of NGC 2276, in which a shock was reported, by analysing XMM-Newton X-ray data for this galaxy. We use archival XMM-Newton observations of NGC 4254, NGC 4569, and NGC 2276. Maps of the soft diffuse emission in the energy band 0.2 - 1 keV are obtained. For the three galaxies, especially at the position of magnetic field enhancements we perform a spectral analysis to derive gas temperatures and thus to look for shock signatures. A shock is a signature of ram pressure resulting from supersonic velocities; weak tidal interactions are not expected to influence the temperature of the ionized gas. In NGC 4254, we do not observe any temperature increase. This suggests tidal interactions rather than ram pressure stripping. In NGC 4569 the radio polarized ridge shows a higher temperature, which may indicate ram-pressure effects. For NGC 2276, we do not find clear indications of a shock. The main driver of the observed distortions is most likely tidal interaction. Determining gas temperatures via sensitive X-ray observations seems to be a good method for distinguishing between ram pressure and tidal interaction effects acting upon a galaxy.
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morpholo gy, HI deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines HI mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4] - [12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of HI gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution HI imaging.
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, d eeper H$alpha$ observations carried out with the Subaru telescope. However the lack of a simultaneous $r$-band exposure, together with the presence of strong stellar ghosts in the Subaru images, prevented us from quantifying the detections. We therefore devoted one full night of H$alpha$ observation to each of the three galaxies using the San Pedro Martir 2.1m telescope. One-sided tails of H$alpha$ emission of 10-20 kpc projected size were detected, suggesting an ongoing ram pressure stripping event. We added these 3 new sources of extended ionized gas (EIG) added to the 12 found by Yagi et al. (2010), NGC 4848 (Fossati et al. 2012), and NGC 4921 whose ram pressure stripping is certified by HI asymmetry. This brings the number sources with H$alpha$ trails to 17 gaseous tails out of 27 (63 %) late-type galaxies (LTG) galaxies members of the Coma cluster with direct evidence of ram pressure stripping. The 27 LTG galaxies, among these the 17 with extended H$alpha$ tails, have kinematic properties that are different from the rest of the early-type galaxy (ETG) population of the c ore of the Coma cluster, as they deviate in the phase-space diagram $Delta$V/$sigma$ versus $r/R_{200}$.
In the current epoch, one of the main mechanisms driving the growth of galaxy clusters is the continuous accretion of group-scale halos. In this process, the ram pressure applied by the hot intracluster medium on the gas content of the infalling grou p is responsible for stripping the gas from its dark-matter halo, which gradually leads to the virialization of the infalling gas in the potential well of the main cluster. Using deep wide-field observations of the poor cluster Hydra A/A780 with XMM-Newton and Suzaku, we report the discovery of an infalling galaxy group 1.1 Mpc south of the cluster core. The presence of a substructure is confirmed by a dynamical study of the galaxies in this region. A wake of stripped gas is trailing behind the group over a projected scale of 760 kpc. The temperature of the gas along the wake is constant at kT ~ 1.3 keV, which is about a factor of two less than the temperature of the surrounding plasma. We observe a cold front pointing westwards compared to the peak of the group, which indicates that the group is currently not moving in the direction of the main cluster, but is moving along an almost circular orbit. The overall morphology of the group bears remarkable similarities with high-resolution numerical simulations of such structures, which greatly strengthens our understanding of the ram-pressure stripping process.
Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intra-cluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor system s by RPS is not easily observed and must happen in the outskirts of clusters. In a few objects in close by galaxy clusters and the field, RPS has been observed. Since cluster early-type DGs also show a large variety of internal structures (unexpected central gas reservoirs, blue stellar cores, composite radial stellar profiles), we aim in this study to investigate how ram pressure (RP) affects the interstellar gas content and therefore the star-formation (SF) activity. Using a series of numerical simulations, we quantify the dependence of the stripped-off gas on the velocity of the infalling DGs and on the ambient ICM density. We demonstrated that SF can be either suppressed or triggered by RP depending on the ICM density and the DGs mass. Under some conditions, RP can compress the gas, so that it is unexpectedly retained in the central DG region and forms stars. When gas clouds are still bound against stripping but lifted from a thin disk and fall back, their new stars form an ellipsoidal (young) stellar population already with a larger velocity dispersion without the necessity of harassment. Most spectacularly, star clusters can form downstream in stripped-off massive gas clouds in the case of strong RP. We compare our results to observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا