ترغب بنشر مسار تعليمي؟ اضغط هنا

A textbook example of ram-pressure stripping in the Hydra A/A780 cluster

117   0   0.0 ( 0 )
 نشر من قبل Sabrina De Grandi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the current epoch, one of the main mechanisms driving the growth of galaxy clusters is the continuous accretion of group-scale halos. In this process, the ram pressure applied by the hot intracluster medium on the gas content of the infalling group is responsible for stripping the gas from its dark-matter halo, which gradually leads to the virialization of the infalling gas in the potential well of the main cluster. Using deep wide-field observations of the poor cluster Hydra A/A780 with XMM-Newton and Suzaku, we report the discovery of an infalling galaxy group 1.1 Mpc south of the cluster core. The presence of a substructure is confirmed by a dynamical study of the galaxies in this region. A wake of stripped gas is trailing behind the group over a projected scale of 760 kpc. The temperature of the gas along the wake is constant at kT ~ 1.3 keV, which is about a factor of two less than the temperature of the surrounding plasma. We observe a cold front pointing westwards compared to the peak of the group, which indicates that the group is currently not moving in the direction of the main cluster, but is moving along an almost circular orbit. The overall morphology of the group bears remarkable similarities with high-resolution numerical simulations of such structures, which greatly strengthens our understanding of the ram-pressure stripping process.

قيم البحث

اقرأ أيضاً

We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morpholo gy, HI deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines HI mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4] - [12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of HI gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution HI imaging.
This study uses HI image data from the WALLABY pilot survey with the ASKAP telescope, covering the Hydra cluster out to 2.5$r_{200}$. We present the projected phase-space distribution of HI-detected galaxies in Hydra, and identify that nearly two thi rds of the galaxies within $1.25r_{200}$ may be in the early stages of ram pressure stripping. More than half of these may be only weakly stripped, with the ratio of strippable HI (i.e., where the galactic restoring force is lower than the ram pressure in the disk) mass fraction (over total HI mass) distributed uniformly below 90%. Consequently, the HI mass is expected to decrease by only a few 0.1 dex after the currently strippable portion of HI in these systems has been stripped. A more detailed look at the subset of galaxies that are spatially resolved by WALLABY observations shows that, while it typically takes less than 200 Myr for ram pressure stripping to remove the currently strippable portion of HI, it may take more than 600 Myr to significantly change the total HI mass. Our results provide new clues to understanding the different rates of HI depletion and star formation quenching in cluster galaxies.
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, d eeper H$alpha$ observations carried out with the Subaru telescope. However the lack of a simultaneous $r$-band exposure, together with the presence of strong stellar ghosts in the Subaru images, prevented us from quantifying the detections. We therefore devoted one full night of H$alpha$ observation to each of the three galaxies using the San Pedro Martir 2.1m telescope. One-sided tails of H$alpha$ emission of 10-20 kpc projected size were detected, suggesting an ongoing ram pressure stripping event. We added these 3 new sources of extended ionized gas (EIG) added to the 12 found by Yagi et al. (2010), NGC 4848 (Fossati et al. 2012), and NGC 4921 whose ram pressure stripping is certified by HI asymmetry. This brings the number sources with H$alpha$ trails to 17 gaseous tails out of 27 (63 %) late-type galaxies (LTG) galaxies members of the Coma cluster with direct evidence of ram pressure stripping. The 27 LTG galaxies, among these the 17 with extended H$alpha$ tails, have kinematic properties that are different from the rest of the early-type galaxy (ETG) population of the c ore of the Coma cluster, as they deviate in the phase-space diagram $Delta$V/$sigma$ versus $r/R_{200}$.
We present results from neutral atomic hydrogen (HI) observations of Hydra I, the first cluster observed by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. For the first time we sh ow that WALLABY can reach its final survey sensitivity. Leveraging the sensitivity, spatial resolution and wide field of view of WALLABY, we identify a galaxy, ESO 501-G075, that lies near the virial radius of Hydra I and displays an HI tail. ESO 501-G075 shows a similar level of morphological asymmetry as another cluster member, which lies near the cluster centre and shows signs of experiencing ram pressure. We investigate possible environmental processes that could be responsible for producing the observed disturbance in the HI morphology of ESO 501-G075. We rule out tidal interactions, as ESO 501-G075 has no nearby neighbours within $sim0.34$Mpc. We use a simple model to determine that ram pressure can remove gas from the disc at radii $rgtrsim25$kpc. We conclude that, as ESO 501-G075 has a typical HI mass compared to similar galaxies in the field and its morphology is compatible with a ram pressure scenario, ESO 501-G075 is likely recently infalling into the cluster and in the early stages of experiencing ram pressure.
Prompted by the discovery of A1758N_JFG1, a spectacular case of ram-pressure stripping (RPS) in the galaxy cluster A1758N, we investigate the properties of other galaxies suspected to undergo RPS in this equal-mass, post-collision merger. Exploiting constraints derived from Hubble Space Telescope images and Keck longslit spectroscopy, our finding of apparent debris trails and dramatically enhanced star formation rates in an additional seven RPS candidates support the hypothesis that RPS, and hence rapid galaxy evolution in high-density environments, is intricately linked to cluster collisions. Unexpectedly, we find the vast majority of RPS candidates in A1758N to be moving toward us, and in a shared direction as projected on the plane of the sky. We hypothesize that this directional bias is the result of two successive events: (1) the quenching, during and after the first core passage, of star formation in galaxies with an approximately isotropic velocity distribution within the central region of the merger, and (2) RPS events triggered in late-type galaxies falling into the merging system along a filament, possibly enhanced by a shock front expanding into the outskirts of the south-eastern subcluster. Since this explanation implies that the merger axis of A1758N must be significantly inclined with respect to the plane of the sky, our findings open the possibility of RPS events becoming important diagnostic tools to constrain the geometry of cluster collisions that, due to the orientation of the merger axis, lack the classic observational signatures of face-on mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا