ﻻ يوجد ملخص باللغة العربية
Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles with a 14.8 $pm$ 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slows near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborated strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our study sheds light on the origin of spin-glass-like phenomena and the role of surface spins in magnetic hollow nanostructures.
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engin
The electronic structure and magnetic properties of the strongly correlated material La$_2$O$_3$Fe$_2$Se$_2$ are studied by using both the density function theory plus $U$ (DFT+$U$) method and the DFT plus Gutzwiller (DFT+G) variational method. The g
Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the
In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (g-Fe2O3) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find tha
Magnetic properties and underlying magnetic models of the synthetic A$_2$Cu$_3$O(SO$_4)_3$ fedotovite (A = K) and puninite (A = Na) minerals, as well as the mixed euchlorine-type NaKCu$_3$O(SO$_4)_3$ are reported. We show that all these compounds con