ﻻ يوجد ملخص باللغة العربية
We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy $Delta$ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude $t$ between them, namely $Delta$ = $t$, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.
In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference eff
We compute various current correlation functions of electrons flowing from a topological nanowire to the tip of a superconducting scanning tunnel microscope and identify fingerprints of a Majorana bound state. In particular, the spin resolved cross-c
In the quest for realizations of quantum spin liquids, the exploration of Kitaev materials - spin-orbit entangled Mott insulators with strong bond-directional exchanges - has taken center stage. However, in these materials the local spin-orbital j=1/
We discuss all the characteristics of Yu-Shiba-Rusinov states for clusters of impurities with classical magnetic moments in a superconducting substrate with s-wave symmetry. We consider the effect of the multiorbital structure of the impurities and t
We propose a hierarchical architecture for building logical Majorana zero modes using physical Majorana zero modes at the Y-junctions of a hexagonal network of semiconductor nanowires. Each Y-junction contains three physical Majoranas, which hybridiz