ﻻ يوجد ملخص باللغة العربية
We discuss all the characteristics of Yu-Shiba-Rusinov states for clusters of impurities with classical magnetic moments in a superconducting substrate with s-wave symmetry. We consider the effect of the multiorbital structure of the impurities and the effect of the crystal field splitting. We solve the problem exactly and calculate the subgap Greens function, which has poles at the energies of the Shiba states and defines the local density of states associated to their wave functions. For the case of impurities sufficiently separated, we derive an effective Hamiltonian to describe the hybridization mediated by the substrate. We analyze the main features of the spectrum and the spectral density of the subgap excitations for impurities in dimer configurations with different relative orientations of the magnetic moments. We also illustrate how the same formalism applies for the solution of a trimer with frustration in the orientation of the magnetic moments.
When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity1. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov stat
Magnetic impurities in $s$-wave superconductors lead to spin-polarized Yu-Shiba-Rusinov (YSR) in-gap states. Chains of magnetic impurities offer one of the most viable routes for the realization of Majorana bound states which hold a promise for topol
Theoretical descriptions of Yu-Shiba-Rusinov (YSR) states induced by magnetic impurities inside the gap of a superconductor typically rely on a classical spin model or are restricted to spin-1/2 quantum spins. These models fail to account for importa
We study an interacting quantum dot in contact with a small superconducting island described by the interacting pairing model with charging (Coulomb) energy $E_c$. This charge-conserving Hamiltonian admits a compact matrix-product-operator representa
The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydroge