ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism and a field-cycling induced effect in staircase Kagome antiferromagnet PbCu$_3$TeO$_7$ revealed by NMR

46   0   0.0 ( 0 )
 نشر من قبل Jia Dai
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report $^{125}$Te and $^{63,65}$Cu nuclear magnetic resonance (NMR) studies on single crystals of staircase Kagome antiferromagnet PbCu3TeO7 ($T_{N1}approx$ 36 K). A Curie constant as large as $Theta$~140 K is obtained by a Curie-Weiss fitting of the high-temperature Knight shift. The frustration factor f (= $Theta/T_N $)$approx$ 4 implies intermediate frustration in this system. From the high-temperature Knight shift data of $^{125}$Te, its hyperfine coupling constant is estimated to be $^{125}A_{hf}$ = -67 kOe/${mu}_B$, which suggests a strong interlayer coupling bridging the neighboring Kagome layers. At $T$= 2 K, we find two types of zero-field NMR signals. One has no dependence on the history of the field treatment, which is consistent with Cu NMR signals from inequivalent Cu sites with different internal hyperfine fields. The other one is only seen after a field-cycling process, which is consistent with domain wall contributions in this frustrated antiferromagnet.

قيم البحث

اقرأ أيضاً

Using single crystal neutron scattering we show that the magnetic structure Ni$_3$TeO$_6$ at fields above 8.6 T along the $c$ axis changes from a commensurate collinear antiferromagnetic structure with spins along c and ordering vector $Q_C$= (0 0 1. 5), to a conical spiral with propagation vector $Q_{IC}$= (0 0 1.5$pmdelta$),$deltasim$0.18, having a significant spin component in the ($a$,$b$) plane. We determine the phase diagram of this material in magnetic fields up to 10.5 T along $c$ and show the phase transition between the low field and conical spiral phases is of first order by observing a discontinuous jump of the ordering vector. $Q_{IC}$ is found to drift both as function of magnetic field and temperature. Preliminary inelastic neutron scattering reveals that the spin wave gap in zero field has minima exactly at $Q_{IC}$ and a gap of about 1.1 meV consisting with a cross-over around 8.6 T. Our findings excludes the possibility of the inverse Dzyaloshinskii-Moriya interaction as a cause for the giant magneto-electric coupling earlier observed in this material and advocates for the symmetric exchangestriction as the origin of this effect.
We performed a comprehensive electron spin resonance, magnetization and heat capacity study on the field-induced magnetic phase transitions in the kagome antiferromagnet $alpha-Cu_3Mg(OH)_6Br_2$. With the successful preparation of single crystals, we mapped out the magnetic phase diagrams under the $c$-axis and $ab$-plane directional magnetic fields $B$. For $B|c$, the three-dimensional (3D) magnon Bose-Einstein condensation (BEC) is evidenced by the power law scaling of the transition temperature, $T_cpropto (B_c-B)^{2/3}$. For $B|ab$, the transition from the canted antiferromagetic (CAFM) state to the fully polarized (FP) state is a crossover rather than phase transition, and the characteristic temperature has a significant deviation from the 3D BEC scaling. The different behaviors of the field-induced magnetic transitions for $B|c$ and $B|ab$ could result from the Dzyaloshinkii-Moriya (DM) interaction with the DM vector along the $c$-axis, which preserves the $c$-axis directional spin rotation symmetry and breaks the spin rotation symmetry when $B|ab$. The 3D magnon BEC scaling for $B|c$ is immune to the off-stoichiometric disorder in our sample $alpha-Cu_{3.26}Mg_{0.74}(OH)_6Br_2$. Our findings have the potential to shed light on the investigations of the magnetic anisotropy and disorder effects on the field-induced magnon BEC in the quantum antiferromagnet.
We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c-direction. (The Kagome plane is the a-c plane.) This system contains two types of N i ions, which we call spine and cross-tie. Our neutron measurements can be described with the paramagnetic space group Cmca for T < 15K and each observed magnetically ordered phase is characterized by the appropriate irreducible representation(s). Our zero-field measurements show that at T_PH=9.1K NVO undergoes a transition to an incommensurate order which is dominated by a longitudinally-modulated structure with the spine spins mainly parallel to the a-axis. Upon further cooling, a transition is induced at T_HL=6.3K to an elliptically polarized incommensurate structure with both spine and cross-tie moments in the a-b plane. At T_LC=4K the system undergoes a first-order phase transition, below which the magnetic structure is a commensurate antiferromagnet with the staggered magnetization primarily along the a-axis and a weak ferromagnetic moment along the c-axis. A specific heat peak at T_CC=2.3K indicates an additional transition, which we were however not able to relate to a change of the magnetic structure. Neutron, specific heat, and magnetization measurements produce a comprehensive temperature-field phase diagram. The symmetries of the two incommensurate magnetic phases are consistent with the observation that only one phase has a spontaneous ferroelectric polarization. All the observed magnetic structures are explained theoretically using a simplified model Hamiltonian, involving competing nearest- and next-nearest-neighbor exchange interactions, spin anisotropy, Dzyaloshinskii-Moriya and pseudo-dipolar interactions.
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with non-negligible Dzyaloshinskii-Moriya interaction~(DMI). A well established phase transition to the $mathbf q=0$ long-ran ge order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in inelastic neutron scattering experiment by Han et al (Nature (London) 492, 406 (2012)}). It is a time-reversal symmetry breaking $mathbb Z_2$ spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
The distribution of chemically similar transition-metal ions is a fundamental issue in the study of herbertsmithite-type kagome antiferromagnets. Using synchrotron radiation, we have performed resonant powder x-ray diffractions on newly synthesized C oCu3(OH)6Cl2, which provide an exact distribution of transition-metal ions in the frustrated antiferromagnet. Both magnetic susceptibility and specific heat measurements are quantitatively consistent with the occupation fractions determined by resonant x-ray diffraction. The distribution of transition-metal ions and residual magnetic entropy suggest a novel low temperature (T < 4 K) magnetism, where the interlayer triangular spins undergo a spin-glass freezing while the kagome spins still keep highly frustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا