ﻻ يوجد ملخص باللغة العربية
We study the global SF law - the relation between gas and SFRs in a sample of 181 local galaxies with L_IR spanning almost five orders of magnitude, which includes 115 normal galaxies and 66 (U)LIRGs. We derive their atomic, molecular gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature, and SFRs are determined both from total IR and 1.4 GHz radio continuum (RC) luminosities. In order to derive the disk-averaged surface densities of gas and SFRs, we have used high-resolution RC observations to measure the radio sizes for all galaxies. We find that dense molecular gas (as traced by HCN) has the tightest correlation with that of SFRs, and is linear in (N=1.01 +/- 0.02) across the full galaxy sample. The correlation between densities of molecular gas (traced by CO) and SFRs is sensitive to the adopted value of the alpha_CO used to infer molecular gas masses from CO luminosities. For a fixed value of alpha_CO, a slope of 1.14+/-0.02 is found. If instead we adopt values of 4.6 and 0.8 for disk galaxies and (U)LIRGs, respectively, we find the two distinct relations. If applying a continuously varying alpha_CO to our sample, we recover a single relation with slope of 1.60+/-0.03. The SFRs is a steeper function of total gas than that of molecular gas, and is tighter among low-luminosity galaxies. We find no correlation between SFRs and atomic gas.
We present a 1.4 GHz Karl G. Jansky Very Large Array (VLA) study of a sample of early-type galaxies (ETGs) from the volume- and magnitude-limited ATLAS-3D survey. The radio morphologies of these ETGs at a resolution of 5 are diverse and include sourc
We study the global star formation law - the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (10^9-10^12 Lsun), which includes 91 normal
We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18
We use observed radial profiles of mass surface densities of total, $Sigma_g$, & molecular, $Sigma_{rm H2}$, gas, rotation velocity & star formation rate (SFR) surface density, $Sigma_{rm sfr}$, of the molecular-rich ($Sigma_{rm H2}geSigma_{rm HI}/2$
Correlations between the radio continuum, infrared and CO emission are known to exist for several types of galaxies and across several orders of magnitude. However, the low-mass, low-luminosity and low-metallicity regime of these correlations is not