ﻻ يوجد ملخص باللغة العربية
Francis Castro, et al [2] computed the exact divisibility of families of exponential sums associated to binomials $F(X) = aX^{d_1} + bX^{d_2}$ over $mathbb{F}_p$, and a conjecture is presented for related work. Here we study this question.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
We prove that the Hausdorff dimension of the set $mathbf{x}in [0,1)^d$, such that $$ left|sum_{n=1}^N expleft(2 pi ileft(x_1n+ldots+x_d n^dright)right) right|ge c N^{1/2} $$ holds for infinitely many natural numbers $N$, is at least $d-1/2d$ for $d g
Recently, Ni and Pan proved a $q$-congruence on certain sums involving central $q$-binomial coefficients, which was conjectured by Guo. In this paper, we give a generalization of this $q$-congruence and confirm another $q$-congruence, also conjecture
In this paper, we derive a useful lower bound for the Kullback-Leibler divergence (KL-divergence) based on the Hammersley-Chapman-Robbins bound (HCRB). The HCRB states that the variance of an estimator is bounded from below by the Chi-square divergen
In this note, a criterion for a class of binomials to be permutation polynomials is proposed. As a consequence, many classes of binomial permutation polynomials and monomial complete permutation polynomials are obtained. The exponents in these monomials are of Niho type.