ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting a comparability mapping to improve bi-lingual data categorization: a three-mode data analysis perspective

43   0   0.0 ( 0 )
 نشر من قبل Pierre-Francois Marteau
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address in this paper the co-clustering and co-classification of bilingual data laying in two linguistic similarity spaces when a comparability measure defining a mapping between these two spaces is available. A new approach that we can characterized as a three-mode analysis scheme, is proposed to mix the comparability measure with the two similarity measures. Our aim is to improve jointly the accuracy of classification and clustering tasks performed in each of the two linguistic spaces, as well as the quality of the final alignment of comparable clusters that can be obtained. We used first some purely synthetic random data sets to assess our formal similarity-comparability mixing model. We then propose two variants of the comparability measure that has been defined by (Li and Gaussier 2010) in the context of bilingual lexicon extraction to adapt it to clustering or categorizing tasks. These two variant measures are subsequently used to evaluate our similarity-comparability mixing model in the context of the co-classification and co-clustering of comparable textual data sets collected from Wikipedia categories for the English and French languages. Our experiments show clear improvements in clustering and classification accuracies when mixing comparability with similarity measures, with, as expected, a higher robustness obtained when the two comparability variant measures that we propose are used. We believe that this approach is particularly well suited for the construction of thematic comparable corpora of controllable quality.

قيم البحث

اقرأ أيضاً

The use of persistently exciting data has recently been popularized in the context of data-driven analysis and control. Such data have been used to assess system theoretic properties and to construct control laws, without using a system model. Persis tency of excitation is a strong condition that also allows unique identification of the underlying dynamical system from the data within a given model class. In this paper, we develop a new framework in order to work with data that are not necessarily persistently exciting. Within this framework, we investigate necessary and sufficient conditions on the informativity of data for several data-driven analysis and control problems. For certain analysis and design problems, our results reveal that persistency of excitation is not necessary. In fact, in these cases data-driven analysis/control is possible while the combination of (unique) system identification and model-based control is not. For certain other control problems, our results justify the use of persistently exciting data as data-driven control is possible only with data that are informative for system identification.
People naturally bring their prior beliefs to bear on how they interpret the new information, yet few formal models exist for accounting for the influence of users prior beliefs in interactions with data presentations like visualizations. We demonstr ate a Bayesian cognitive model for understanding how people interpret visualizations in light of prior beliefs and show how this model provides a guide for improving visualization evaluation. In a first study, we show how applying a Bayesian cognition model to a simple visualization scenario indicates that peoples judgments are consistent with a hypothesis that they are doing approximate Bayesian inference. In a second study, we evaluate how sensitive our observations of Bayesian behavior are to different techniques for eliciting people subjective distributions, and to different datasets. We find that people dont behave consistently with Bayesian predictions for large sample size datasets, and this difference cannot be explained by elicitation technique. In a final study, we show how normative Bayesian inference can be used as an evaluation framework for visualizations, including of uncertainty.
Data analytics and data science play a significant role in nowadays society. In the context of Smart Grids (SG), the collection of vast amounts of data has seen the emergence of a plethora of data analysis approaches. In this paper, we conduct a Syst ematic Mapping Study (SMS) aimed at getting insights about different facets of SG data analysis: application sub-domains (e.g., power load control), aspects covered (e.g., forecasting), used techniques (e.g., clustering), tool-support, research methods (e.g., experiments/simulations), replicability/reproducibility of research. The final goal is to provide a view of the current status of research. Overall, we found that each sub-domain has its peculiarities in terms of techniques, approaches and research methodologies applied. Simulations and experiments play a crucial role in many areas. The replicability of studies is limited concerning the provided implemented algorithms, and to a lower extent due to the usage of private datasets.
Managing the data for Information Retrieval (IR) experiments can be challenging. Dataset documentation is scattered across the Internet and once one obtains a copy of the data, there are numerous different data formats to work with. Even basic format s can have subtle dataset-specific nuances that need to be considered for proper use. To help mitigate these challenges, we introduce a new robust and lightweight tool (ir_datasets) for acquiring, managing, and performing typical operations over datasets used in IR. We primarily focus on textual datasets used for ad-hoc search. This tool provides both a Python and command line interface to numerous IR datasets and benchmarks. To our knowledge, this is the most extensive tool of its kind. Integrations with popular IR indexing and experimentation toolkits demonstrate the tools utility. We also provide documentation of these datasets through the ir_datasets catalog: https://ir-datasets.com/. The catalog acts as a hub for information on datasets used in IR, providing core information about what data each benchmark provides as well as links to more detailed information. We welcome community contributions and intend to continue to maintain and grow this tool.
Multiple neural language models have been developed recently, e.g., BERT and XLNet, and achieved impressive results in various NLP tasks including sentence classification, question answering and document ranking. In this paper, we explore the use of the popular bidirectional language model, BERT, to model and learn the relevance between English queries and foreign-language documents in the task of cross-lingual information retrieval. A deep relevance matching model based on BERT is introduced and trained by finetuning a pretrained multilingual BERT model with weak supervision, using home-made CLIR training data derived from parallel corpora. Experimental results of the retrieval of Lithuanian documents against short English queries show that our model is effective and outperforms the competitive baseline approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا