ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Effects on the Mechanical Elongation of AuCu Nanowires: De-alloying and the Formation of Mixed Suspended Atomic Chains

102   0   0.0 ( 0 )
 نشر من قبل Pedro Autreto A.S.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here an atomistic study of the mechanical deformation of AuxCu(1-x) atomic-size wires (NWs) by means of high resolution transmission electron microscopy (HRTEM) experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.



قيم البحث

اقرأ أيضاً

We report high resolution transmission electron microscopy and classical molecular dynamics simulation results of mechanically stretching copper nanowires conducting to linear atomic suspended chains (LACs) formation. In contrast with some previous e xperimental and theoretical work in literature that stated that the formation of LACs for copper should not exist our results showed the existence of LAC for the [111], [110], and [100] crystallographic directions, being thus the sequence of most probable occurence.
113 - J. Bettini , F. Sato , P.Z. Coura 2006
We present a study of the elongation and rupture of gold-silver alloy nanowires. Atomistic details of the evolution were derived from time-resolved atomic resolution transmission electron microscopy and molecular dynamics simulations. The results sho w the occurrence of gold enrichment at the nanojunction region, leading to a gold-like structural behavior even for alloys with minor gold content. Our observations have also revealed the formation of mixed (Au and Ag) linear atomic chains.
162 - G. Sainath , B.K. Choudhary 2016
For the first time, we report the formation of pentagonal atomic chains during tensile deformation of ultra thin BCC Fe nanowires. Extensive molecular dynamics simulations have been performed on $<$100$>$/{110} BCC Fe nanowires with different cross s ection width varying from 0.404 to 3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that above certain temperature, long and stable pentagonal atomic chains form in BCC Fe nanowires with cross section width less than 2.83 nm. The temperature, above which the pentagonal chains form, increases with increase in nanowire size. The pentagonal chains have been observed to be highly stable over large plastic strains and contribute to high ductility in Fe nanowires.
Recent advances in microelectromechanical systems often require multifunctional materials, which are designed so as to optimize more than one property. Using density functional theory calculations for alloyed nitride systems, we illustrate how co-all oying a piezoelectric material (AlN) with different nitrides helps tune both its piezoelectric and mechanical properties simultaneously. Wurtzite AlN-YN alloys display increased piezoelectric response with YN concentration, accompanied by mechanical softening along the crystallographic c direction. Both effects increase the electromechanical coupling coefficients relevant for transducers and actuators. Resonator applications, however, require superior stiffness, thus leading to the need to decouple the increased piezoelectric response from a softened lattice. We show that co-alloying of AlN with YN and BN results in improved elastic properties while retaining most of the piezoelectric enhancements from YN alloying. This finding may lead to new avenues for tuning the design properties of piezoelectrics through composition-property maps. Keywords: piezoelectricity, electromechanical coupling, density functional theory, co-alloying
200 - Wei Liu 2010
Proposed as blanket structural materials for fusion power reactors, reduced activation ferritic/martensitic (RAFM) steel undergoes volume expanding and contracting in a cyclic mode under service environment. Particularly, being subjected to significa nt fluxes of fusion neutrons RAFM steel suffers considerable local volume variations in the radiation damage involved regions. It is necessary to study the structure properties of the alloying elements in contraction and expansion states. In this paper we studied local substitution structures of thirteen alloying elements Al, Co, Cr, Cu, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, and W in bcc Fe and calculated their substitutional energies in the volume variation range from -1.0% to 1.0%. From the structure relaxation results of the first five neighbor shells around the substitutional atom we find the relaxation in each neighbor shell keeps approximately uniform within the volume variation from -1.0% to 1.0% except those of Mn and the relaxation of the fifth neighbor shell is stronger than that of the third and forth, indicating that the lattice distortion due to the substitution atom is easier to spread in <111> direction than in other direction. The relaxation pattern and intensity are related to the size and electron structure of the substitutional atom. For some alloying elements, such as Mo, Nb, Ni, Ta, Ti and W, the substitutional energy decreases noticeably when the volume increases. Further analysis show that the substitutional energy comprises the energy variation originated from local structure relaxation and the chemical potential difference of the substitutional atom between its elemental crystalline state and the solid solution phase in bcc Fe. We think the approximately uniform relaxation of each neighbor shell around a substitutional atom give rise to a linear decrease in the substitutional energy with the increasing volume.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا