ترغب بنشر مسار تعليمي؟ اضغط هنا

Natural gauge mediation with a bino NLSP at the LHC

214   0   0.0 ( 0 )
 نشر من قبل James Barnard Dr
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural models of supersymmetry with a gravitino LSP provide distinctive signatures at the LHC. For a neutralino NLSP, sparticles can decay to two high energy photons plus missing energy. We use the ATLAS diphoton search with 4.8 fb^{-1} of data to place limits in both the stop-gluino and neutralino-chargino mass planes for this scenario. If the neutralino is heavier than 50 GeV, the lightest stop must be heavier than 580 GeV, the gluino heavier than 1100 GeV and charginos must be heavier than approximately 300-470 GeV. This provides the first nontrivial constraints in natural gauge mediation models with a neutralino NLSP decaying to photons, and implies a fine tuning of at least a few percent in such models.



قيم البحث

اقرأ أيضاً

We discuss gauge mediation models in which the smuon and the selectron are mass-degenerate co-NLSP, which we, for brevity, refer to as selectron NLSP. In these models, the stau, as well as the other superpartners, are parametrically heavier than the NLSP. We start by taking a bottom-up perspective and investigate the conditions under which selectron NLSP spectra can be realized in the MSSM. We then give a complete characterization of gauge mediation models realizing such spectra at low energies. The splitting between the slepton families is induced radiatively by the usual hierarchies in the Standard Model Yukawa couplings and hence, no new sources of flavour misalignment are introduced. We construct explicit weakly coupled messenger models which give rise to selectron NLSP, while accommodating a 126 GeV MSSM Higgs mass, both within the framework of General Gauge Mediation and in extensions where direct couplings between the messengers and the Higgs fields are present. In the latter class of models, large A-terms and relatively light stops can be achieved. The collider signatures of these models typically involve multilepton final states. We discuss the relevant LHC bounds and provide examples of models where the decay of the NLSP selectron is prompt, displaced or long-lived. The prompt case can be viewed as an ultraviolet completion of a simplified model recently considered by the CMS collaboration.
We consider a scenario where light bino is the next-to-lightest supersymmetric particle (NLSP) and gravitino/axino is the lightest superysmmetric particle (LSP). For a bino mass less than or around hundred GeV, it can be pair produced at the future l epton colliders through $t-$channel slepton exchange, subsequently decaying into a gravitino/axino plus a photon. We study the prospects to look for such binos at the future colliders and find that a bino mass around 100 GeV can be probed at the $2sigma$ ($5sigma$) level for a slepton below 2 TeV (1.5 TeV) with a luminosity 3 $ab^{-1}$. For a bino mass around 10 GeV, a slepton mass less than 4 TeV (3 TeV) can be probed at the $2sigma$ ($5sigma$) level, which is much beyond the reach of the LHC for direct slepton searches.
The $R$-parity violating decays of Bino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved u sing the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson masses and the Higgs mass. The explicit RPV decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The analysis of these quantities breaks into two separate calculations; first, for Bino neutralino LSPs with mass larger than $M_{W^{pm}}$ and, second, when the Bino neutralino mass is smaller than the electroweak scale. The RPV decay processes in both of these regions is analyzed in detail. The decay lengths of these RPV interactions are discussed. It is shown that for heavy Bino neutralino LSPs the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced decays of various lengths. The situation is reversed for light Bino LSPs, only a small number of which can RPV decay promptly. The relation of these results to the neutrino hierarchy--either normal or inverted--is discussed in detail.
Gluinos that result in classic large missing transverse momentum signatures at the LHC have been excluded by 2011 searches if they are lighter than around 800 GeV. This adds to the tension between experiment and supersymmetric solutions of the natura lness problem, since the gluino is required to be light if the electroweak scale is to be natural. Here, we examine natural scenarios where supersymmetry is present, but was hidden from 2011 searches due to violation of R-parity and the absence of a large missing transverse momentum signature. Naturalness suggests that third generation states should dominate gluino decays and we argue that this leads to a generic signature in the form of same-sign, flavour-ambivalent leptons, without large missing transverse momentum. As a result, searches in this channel are able to cover a broad range of scenarios with some generality and one should seek gluinos that decay in this way with masses below a TeV. We encourage the LHC experiments to tailor a search for supersymmetry in this form. We consider a specific case that is good at hiding: baryon number violation, and estimate that the most constraining existing search from 2011 data implies a lower bound on the gluino mass of 550 GeV.
174 - S. Ambrosanio 2000
We report a study on the measurement of the SUSY breaking scale sqrt(F) in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest SUSY particle (N LSP) and decays into a gravitino with lifetime c*tau_NLSP in the range 0.5 m to 1 km. We study the identification of long-lived sleptons using the momentum and time of flight measurements in the muon chambers of the ATLAS experiment. A realistic evaluation of the statistical and systematic uncertainties on the measurement of the slepton mass and lifetime is performed, based on a detailed simulation of the detector response. Accessible range and precision on sqrt(F) achievable with a counting method are assessed. Many features of our analysis can be extended to the study of different theoretical frameworks with similar signatures at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا