ﻻ يوجد ملخص باللغة العربية
We measure proper motions with the Hubble Space Telescope for 16 extreme radial velocity stars, mostly unbound B stars in the Milky Way halo. Twelve of these stars have proper motions statistically consistent with zero, and thus have radial trajectories statistically consistent with a Galactic center hypervelocity star origin. The trajectory of HE 0437-5439 is consistent with both Milky Way and Large Magellanic Cloud origins. A Galactic center origin is excluded at 3-sigma confidence for two of the lowest radial velocity stars in our sample, however. These two stars are probable disk runaways and provide evidence for ~500 km/s ejections from the disk. We also measure a significant proper motion for the unbound sdO star US 708. Its 1,000 km/s motion is in some tension with proposed supernova ejection models, but can be explained if US 708 was ejected from the stellar halo. In the future, we expect Gaia will better constrain the origin of these remarkable unbound stars.
We present an investigation of the known sample of runaway stars. The orbits of these stars are traced back to their origin in the Galactic disc. The velocity distribution of these stars is compared to theoretical predictions. We conclude that the ma
CONTEXT.The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. AIMS. We want to detect runaway stars using Gaia DR1 proper motions and compare our results with previous
We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our
Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas/yr down to magnitude 17. T
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper