ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Phase-Slip Junction Under Microwave Irradiation

68   0   0.0 ( 0 )
 نشر من قبل Angelo Di Marco
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the dynamics of a quantum phase-slip junction (QPSJ) -- a dual Josephson junction -- connected to a microwave source with frequency $omega_textrm{mw}$. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of $ e omega_textrm{mw} / pi$ in the current-voltage (I-V) characteristic. The experimental observation of these plateaus has been elusive up to now. We argue that thermal as well as quantum fluctuations can smear the I-V characteristic considerably. In order to understand these effects, we study a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations are governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of a new quantum current standard.

قيم البحث

اقرأ أيضاً

We investigate the physics of coherent quantum phase slips in two distinct circuits containing small Josephson junctions: (i) a single junction embedded in an inductive environment and (ii) a long chain of junctions. Starting from the standard Joseph son Hamiltonian, the single junction circuit can be analyzed using quasi-classical methods; we formulate the conditions under which the resulting quasi-charge dynamics is exactly dual to the usual phase dynamics associated with Josephson tunneling. For the chain we use the fact that its collective behavior can be characterized by one variable: the number $m$ of quantum phase slips present on it. We conclude that the dynamics of the conjugate quasi-charge is again exactly dual to the standard phase dynamics of a single Josephson junction. In both cases we elucidate the role of the inductance, essential to obtain exact duality. These conclusions have profound consequences for the behavior of single junctions and chains under microwave irradiation. Since both systems are governed by a model exactly dual to the standard resistively and capacitively shunted junction model, we expect the appearance of current-Shapiro steps. We numerically calculate the corresponding current-voltage characteristics in a wide range of parameters. Our results are of interest in view of a metrological current standard.
A junction with two superconductors coupled by a normal metal hosts Andreev bound states whose energy spectrum is phase-dependent and exhibits a minigap, resulting in a periodic supercurrent. Phase-dependent dissipation also appears at finite frequen cy due to relaxation of Andreev bound states. While dissipation and supercurrent versus phase have previously been measured near thermal equilibrium, their behavior in nonequilibrium is still elusive. By measuring the ac susceptibility of a graphene-superconductor junction under microwave irradiation, we find supercurrent response deviates from adiabatic ac Josephson effect as irradiation frequency is larger than relaxation rate. Notably, when irradiation frequency further increases above the minigap, the dissipation is enhanced at phase 0 where the minigap is largest and dissipation is minimum in equilibrium. We argue that this is evidence of the nonequilibrium distribution function which allows additional level transitions on the same side of the minigap. These results reveal that phase-dependent dissipation is more sensitive than supercurrent to microwave irradiation, and suggest a new method to investigate photon-assisted physics in proximitized superconducting system.
The influence of radio frequency microwaves on the Coulomb blockade characteristics in small Josephson junctions was studied using a one-dimensional array of ten small Al tunnel junctions in the frequency range from 1 MHz to 1000 MHz. Coulomb blockad e voltage ($V_{rm th}$) is diminished with increasing microwave power ($V_{rm ac}$), where the $V_{rm th}$-$V_{rm ac}$ plots for varied frequencies fall on a single curve. We observed and theoretically analyzed a magnetic field $dependent$ renormalization of the applied microwave power, in addition to a magnetic-field $independent$ renormalization effect explained using an effective circuit approach of the array. Due to its high sensitivity to microwave power, the array is well-suited for on-chip detection applications in low temperature environments.
Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in-situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittan ce of the junction, which can be probed by sensing an rf SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance into the current-phase relation and the phase-dependent loss and as these quantities are dictated by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental results by considering a short, diffusive junction model that takes into account the interaction between the Andreev spectrum and the electromagnetic environment, from which we deduce a lifetime of ~17 ps for non-equilibrium populations.
We report on radio-frequency measurements of the charge-phase qubit being under continuous microwave irradiation in the state of weak coupling to a radio-frequency tank circuit. We studied the rf impedance dependence on the two important parameters s uch as power of microwave irradiation whose frequency is close to the gap between the two lowest qubit energy levels, and temperature of the internal heat bath. We have found that backaction effects of the qubit on the rf tank, and vice versa, tank on the qubit, lead to a negative as well as a positive real part of the qubit impedance Re$Z(omega)$ seen by the tank. We have implemented noise spectroscopy measurements for direct impedance readout at the extreme points corresponding to maximum voltage response and obtained absolute values of about 0.017 $Omega$ for the negative and positive Re$Z(omega)$. Our results demonstrate the existence and persistence of the coherent single- and multi-photon Rabi dynamics of the qubit with both negative and positive dynamic resistance inserted into the tank in the temperature range of 10 to 200 mK.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا