ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Rabi response of a charge-phase qubit under microwave irradiation

185   0   0.0 ( 0 )
 نشر من قبل Alexey Soroka
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on radio-frequency measurements of the charge-phase qubit being under continuous microwave irradiation in the state of weak coupling to a radio-frequency tank circuit. We studied the rf impedance dependence on the two important parameters such as power of microwave irradiation whose frequency is close to the gap between the two lowest qubit energy levels, and temperature of the internal heat bath. We have found that backaction effects of the qubit on the rf tank, and vice versa, tank on the qubit, lead to a negative as well as a positive real part of the qubit impedance Re$Z(omega)$ seen by the tank. We have implemented noise spectroscopy measurements for direct impedance readout at the extreme points corresponding to maximum voltage response and obtained absolute values of about 0.017 $Omega$ for the negative and positive Re$Z(omega)$. Our results demonstrate the existence and persistence of the coherent single- and multi-photon Rabi dynamics of the qubit with both negative and positive dynamic resistance inserted into the tank in the temperature range of 10 to 200 mK.



قيم البحث

اقرأ أيضاً

We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of the qubit and its strong inductive coupling to a microwave line ena bled high-amplitude driving without causing significant additional decoherence. Rabi frequencies up to 1.7 GHz were achieved, approaching the qubits level splitting of 4.8 GHz, a regime where the rotating-wave approximation breaks down as a model for the driven dynamics. The spectral density of flux noise observed in the wide frequency range decreases with increasing frequency up to 300 MHz, where the spectral density is not very far from the extrapolation of the 1/f spectrum obtained from the free-induction-decay measurements. We discuss a possible origin of the flux noise due to surface electron spins.
We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this s cheme the DC SQUID bias current pulse is applied via a capacitor instead of a resistor, giving rise to a narrow band-pass instead of a pure low-pass filter configuration of the electromagnetic environment. Measuring one and the same qubit with both setups allows a direct comparison. With the capacitive method about four times faster switching pulses and an increased visibility are achieved. Furthermore, the deliberate engineering of the electromagnetic environment, which minimizes the noise due to the bias circuit, is facilitated. Right at the degeneracy point the qubit coherence is limited by energy relaxation. We find two main noise contributions. White noise is limiting the energy relaxation and contributing to the dephasing far from the degeneracy point. 1/f-noise is the dominant source of dephasing in the direct vicinity of the optimal point. The influence of 1/f-noise is also supported by non-random beatings in the Ramsey and spin echo decay traces. Numeric simulations of a coupled qubit-oscillator system indicate that these beatings are due to the resonant interaction of the qubit with at least one point-like fluctuator, coupled especially strongly to the qubit.
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped element resonator. The coupling strength is mediated by a flux-biased RF SQUID operated in the non-hysteretic regime. By tuning the applied flux bias to the R F SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator . We verify the modulation of coupling strength from 0 to $100 MHz$ by observing modulation in the size of the splitting in the phase qubits spectroscopy, as well as coherently by observing modulation in the vacuum Rabi oscillation frequency when on resonance. The measured spectroscopic splittings and vacuum Rabi oscillations agree well with theoretical predictions.
285 - J. Johansson , S. Saito , T. Meno 2005
We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillations: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We have also obtained evidence of level quantization of the LC circuit by observing the change in the oscillation frequency when the LC circuit was not initially in the vacuum state.
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the no-phonon bound exciton transition resulting in $N$ = $3.6cdot10^{13}$ unpaired spins in the ensemble. We observed a normal mode splitting of the spin ensemble-cavity polariton resonances of 2$gsqrt{N}$ = 580 kHz (where each spin is coupled with strength $g$) in a cavity with a quality factor of 75,000 ($gamma ll kappa approx$ 60 kHz where $gamma$ and $kappa$ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T$_2^*$ = 9 $mu$s) providing a wide window for viewing the dynamics of the coupled spin ensemble-cavity system. The free induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate $gsqrt{N}$. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z-projection of the psuedospin using optical excitation and microwave manipulation respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt $pi$ phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا