ترغب بنشر مسار تعليمي؟ اضغط هنا

FrogWild! -- Fast PageRank Approximations on Graph Engines

414   0   0.0 ( 0 )
 نشر من قبل Michael Borokhovich
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose FrogWild, a novel algorithm for fast approximation of high PageRank vertices, geared towards reducing network costs of running traditional PageRank algorithms. Our algorithm can be seen as a quantized version of power iteration that performs multiple parallel random walks over a directed graph. One important innovation is that we introduce a modification to the GraphLab framework that only partially synchronizes mirror vertices. This partial synchronization vastly reduces the network traffic generated by traditional PageRank algorithms, thus greatly reducing the per-iteration cost of PageRank. On the other hand, this partial synchronization also creates dependencies between the random walks used to estimate PageRank. Our main theoretical innovation is the analysis of the correlations introduced by this partial synchronization process and a bound establishing that our approximation is close to the true PageRank vector. We implement our algorithm in GraphLab and compare it against the default PageRank implementation. We show that our algorithm is very fast, performing each iteration in less than one second on the Twitter graph and can be up to 7x faster compared to the standard GraphLab PageRank implementation.



قيم البحث

اقرأ أيضاً

Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutr
The blockchain paradigm provides a mechanism for content dissemination and distributed consensus on Peer-to-Peer (P2P) networks. While this paradigm has been widely adopted in industry, it has not been carefully analyzed in terms of its network scali ng with respect to the number of peers. Applications for blockchain systems, such as cryptocurrencies and IoT, require this form of network scaling. In this paper, we propose a new stochastic network model for a blockchain system. We identify a structural property called emph{one-endedness}, which we show to be desirable in any blockchain system as it is directly related to distributed consensus among the peers. We show that the stochastic stability of the network is sufficient for the one-endedness of a blockchain. We further establish that our model belongs to a class of network models, called monotone separable models. This allows us to establish upper and lower bounds on the stability region. The bounds on stability depend on the connectivity of the P2P network through its conductance and allow us to analyze the scalability of blockchain systems on large P2P networks. We verify our theoretical insights using both synthetic data and real data from the Bitcoin network.
Analyzing massive complex networks yields promising insights about our everyday lives. Building scalable algorithms to do so is a challenging task that requires a careful analysis and an extensive evaluation. However, engineering such algorithms is o ften hindered by the scarcity of publicly~available~datasets. Network generators serve as a tool to alleviate this problem by providing synthetic instances with controllable parameters. However, many network generators fail to provide instances on a massive scale due to their sequential nature or resource constraints. Additionally, truly scalable network generators are few and often limited in their realism. In this work, we present novel generators for a variety of network models that are frequently used as benchmarks. By making use of pseudorandomization and divide-and-conquer schemes, our generators follow a communication-free paradigm. The resulting generators are thus embarrassingly parallel and have a near optimal scaling behavior. This allows us to generate instances of up to $2^{43}$ vertices and $2^{47}$ edges in less than 22 minutes on 32768 cores. Therefore, our generators allow new graph families to be used on an unprecedented scale.
This work studies a fully distributed algorithm for computing the PageRank vector, which is inspired by the Matching Pursuit and features: 1) a fully distributed implementation 2) convergence in expectation with exponential rate 3) low storage requir ement (two scalar values per page). Illustrative experiments are conducted to verify the findings.
We consider two popular Graph Representation Learning (GRL) methods: message passing for node classification and network embedding for link prediction. For each, we pick a popular model that we: (i) linearize and (ii) and switch its training objectiv e to Frobenius norm error minimization. These simplifications can cast the training into finding the optimal parameters in closed-form. We program in TensorFlow a functional form of Truncated Singular Value Decomposition (SVD), such that, we could decompose a dense matrix $mathbf{M}$, without explicitly computing $mathbf{M}$. We achieve competitive performance on popular GRL tasks while providing orders of magnitude speedup. We open-source our code at http://github.com/samihaija/tf-fsvd
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا