ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication-free Massively Distributed Graph Generation

93   0   0.0 ( 0 )
 نشر من قبل Sebastian Lamm
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyzing massive complex networks yields promising insights about our everyday lives. Building scalable algorithms to do so is a challenging task that requires a careful analysis and an extensive evaluation. However, engineering such algorithms is often hindered by the scarcity of publicly~available~datasets. Network generators serve as a tool to alleviate this problem by providing synthetic instances with controllable parameters. However, many network generators fail to provide instances on a massive scale due to their sequential nature or resource constraints. Additionally, truly scalable network generators are few and often limited in their realism. In this work, we present novel generators for a variety of network models that are frequently used as benchmarks. By making use of pseudorandomization and divide-and-conquer schemes, our generators follow a communication-free paradigm. The resulting generators are thus embarrassingly parallel and have a near optimal scaling behavior. This allows us to generate instances of up to $2^{43}$ vertices and $2^{47}$ edges in less than 22 minutes on 32768 cores. Therefore, our generators allow new graph families to be used on an unprecedented scale.



قيم البحث

اقرأ أيضاً

For parallel breadth first search (BFS) algorithm on large-scale distributed memory systems, communication often costs significantly more than arithmetic and limits the scalability of the algorithm. In this paper we sufficiently reduce the communicat ion cost in distributed BFS by compressing and sieving the messages. First, we leverage a bitmap compression algorithm to reduce the size of messages before communication. Second, we propose a novel distributed directory algorithm, cross directory, to sieve the redundant data in messages. Experiments on a 6,144-core SMP cluster show our algorithm outperforms the baseline implementation in Graph500 by 2.2 times, reduces its communication time by 79.0%, and achieves a performance rate of 12.1 GTEPS (billion edge visits per second)
While algebrisation constitutes a powerful technique in the design and analysis of centralised algorithms, to date there have been hardly any applications of algebraic techniques in the context of distributed graph algorithms. This work is a case stu dy that demonstrates the potential of algebrisation in the distributed context. We will focus on distributed graph algorithms in the congested clique model; the graph problems that we will consider include, e.g., the triangle detection problem and the all-pairs shortest path problem (APSP). There is plenty of prior work on combinatorial algorithms in the congested clique model: for example, Dolev et al. (DISC 2012) gave an algorithm for triangle detection with a running time of $tilde O(n^{1/3})$, and Nanongkai (STOC 2014) gave an approximation algorithm for APSP with a running time of $tilde O(n^{1/2})$. In this work, we will use algebraic techniques -- in particular, algorithms based on fast matrix multiplication -- to solve both triangle detection and the unweighted APSP in time $O(n^{0.15715})$; for weighted APSP, we give a $(1+o(1))$-approximation with this running time, as well as an exact $tilde O(n^{1/3})$ solution.
We reduce the cost of communication and synchronization in graph processing by analyzing the fastest way to process graphs: pushing the updates to a shared state or pulling the updates to a private state.We investigate the applicability of this push- pull dichotomy to various algorithms and its impact on complexity, performance, and the amount of used locks, atomics, and reads/writes. We consider 11 graph algorithms, 3 programming models, 2 graph abstractions, and various families of graphs. The conducted analysis illustrates surprising differences between push and pull variants of different algorithms in performance, speed of convergence, and code complexity; the insights are backed up by performance data from hardware counters.We use these findings to illustrate which variant is faster for each algorithm and to develop generic strategies that enable even higher speedups. Our insights can be used to accelerate graph processing engines or libraries on both massively-parallel shared-memory machines as well as distributed-memory systems.
We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms using MapReduce and a distributed hash table service. This extension allows us to give new graph algorithms with much lower round complexities compared to the best known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in $O(1)$ rounds and connectivity/minimum spanning tree in $O(loglog_{m/n} n)$ rounds both using $O(n^delta)$ space per machine for constant $delta < 1$. In the same memory regime for MPC, the best known algorithms for these problems require polylog $n$ rounds. Our results imply that the 2-Cycle conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.
Identifying clusters of similar elements in a set is a common task in data analysis. With the immense growth of data and physical limitations on single processor speed, it is necessary to find efficient parallel algorithms for clustering tasks. In th is paper, we study the problem of correlation clustering in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model. More specifically, we are given a complete graph where the edges are either positive or negative, indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices into clusters with as few disagreements as possible. That is, we want to minimize the number of positive inter-cluster edges and negative intra-cluster edges. Consider an input graph $G$ on $n$ vertices such that the positive edges induce a $lambda$-arboric graph. Our main result is a 3-approximation ($textit{in expectation}$) algorithm to correlation clustering that runs in $mathcal{O}(log lambda cdot textrm{poly}(log log n))$ MPC rounds in the $textit{strongly sublinear memory regime}$. This is obtained by combining structural properties of correlation clustering on bounded arboricity graphs with the insights of Fischer and Noever (SODA 18) on randomized greedy MIS and the $texttt{PIVOT}$ algorithm of Ailon, Charikar, and Newman (STOC 05). Combined with known graph matching algorithms, our structural property also implies an exact algorithm and algorithms with $textit{worst case}$ $(1+epsilon)$-approximation guarantees in the special case of forests, where $lambda=1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا