ترغب بنشر مسار تعليمي؟ اضغط هنا

Supergravity gauge theories strike back: There is no crisis for SUSY but a new collider may be required for discovery

72   0   0.0 ( 0 )
 نشر من قبل Howard Baer
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

More than 30 years ago, Arnowitt-Chamseddine-Nath (ACN) and others established the compelling framework of supergravity gauge theories (SUGRA) as a picture for the next step in beyond the Standard Model physics. We review the current SUGRA scenario in light of recent data from LHC8 collider searches and the Higgs boson discovery. While many SUSY and non-SUSY scenarios are highly disfavored or even excluded by LHC, the essential SUGRA scenario remains intact and as compelling as ever. For naturalness, some non-universality between matter and Higgs sector soft terms is required along with substantial trilinear soft terms. SUSY models with radiatively-driven naturalness (RNS) are found with high scale fine-tuning at a modest ~10%. In this case, natural SUSY might be discovered at LHC13 but could also easily elude sparticle search endeavors. A linear e^+e^- collider with sqrt{s}>2m(higgsino) is needed to provide the definitive search for the required light higgsino states which are the hallmark of natural SUSY. In the most conservative scenario, we advocate inclusion of a Peccei-Quinn sector so that dark matter is composed of a WIMP/axion admixture i.e. two dark matter particles.

قيم البحث

اقرأ أيضاً

175 - D.Z. Freedman , H. Osborn 1998
Recently a non-perturbative formula for the RG flow between UV and IR fixed points of the coefficient in the trace of the energy momentum tensor of the Euler density has been obtained for N=1 SUSY gauge theories by relating the trace and R-current an omalies. This result is compared here with an earlier perturbation theory analysis based on a naturally defined metric on the space of couplings for general renormalisable quantum field theories. This approach is specialised to N=1 supersymmetric theories and extended, using consistency arguments, to obtain the Euler coefficient at fixed points to 4-loops. The result agrees completely, to this order, with the exact formula.
Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W, Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. However, in models with gaugino mass unification, the wino is sufficiently light that supersymmetry discovery is possible in other channels over the entire natural SUSY parameter space with no worse than 3% fine-tuning. Here, we examine the SUSY reach in more general models with and without gaugino mass unification (specifically, natural generalized mirage mediation), and show that the high energy LHC (HE-LHC), a pp collider with sqrt{s}=33 TeV, will be able to detect the SUSY signal over the entire allowed mass range. Thus, HE-LHC would either discover or conclusively falsify natural SUSY with better than 3% fine-tuning using a conservative measure that allows for correlations among the model parameters.
76 - Saurya Das 2020
We show that if Dark Matter is made up of light bosons, they form a Bose-Einstein condensate in the early Universe. This in turn naturally induces a Dark Energy of approximately equal density and exerting negative pressure.This explains the so-called coincidence problem.
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb$^{-1}$ run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as $B_stomumu$ and $muto egamma$. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا