ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic inhomogeneity on a triangular lattice: the magnetic-exchange versus the elastic energy and the role of disorder

115   0   0.0 ( 0 )
 نشر من قبل Andrej Zorko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated $alpha$-NaMnO$_2$, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO$_2$ that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO$_2$ is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows an understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets.



قيم البحث

اقرأ أيضاً

Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant $d$- and localized $f$- electrons) and intersite (superexchange) correlation $J_{s e}$ (between localized $f$- electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of $d$- and $f$- electrons are observed to depend strongly on the value of $J$, $J_{se}$ and also on the total number of $d$- electrons ($N_d$).
326 - Q. Huang , R. Rawl , W. W. Xie 2021
With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutro n scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9 with Sr doping on non-magnetic Ba2+ ion sites. The results show that Ba2.87Sr0.13CoSb2O9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120-degree spin structure at zero field with reduced ordered moment as 1.24{mu}B/Co; (iii) a series of spin state transitions for both H // ab-plane and H // c-axis. For H // ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.
The anisotropic triangular lattice of the crednerite system Cu(Mn1-xCux)O2 is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measur ements show that the undoped phase (x=0) undergoes a transition to antiferromagnetic long-range order that is stabilized by a frustration-relieving structural distortion. Small deviation from the stoichiometric composition alters the magnetoelastic characteristics and reduces the effective dimensionality of the magnetic lattice. Upon increasing the doping level, the interlayer coupling changes from antiferromagnetic to ferromagnetic. As the structural distortion is suppressed, the long-range magnetic order is gradually transformed into a two-dimensional order.
We performed neutron single crystal and synchrotron X-ray powder diffraction experiments in order to investigate the magnetic and crystal structures of the conductive layered triangular-lattice antiferromagnet PdCrO2 with a putative spin chirality, w hich contributes to an unconventional anomalous Hall effect. We revealed that the ground-state magnetic structure is a commensurate and nearly-coplanar 120-degrees spin structure. The 120-degrees plane in different Cr layers seem to tilt with one another, leading to a small noncoplanarity. Such a small but finite non-coplanar stacking of the 120-degrees planes gives rise to a finite scalar spin chirality, which may be responsible for the unconventional nature of the Hall effect of PdCrO2.
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne d by decoupled Ising-type chains, and its accidental degeneracy is due to the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave theory. We find that quantum fluctuations couple next-nearest-neighbor chains through an emergent four-spin interaction, while nearest-neighbor chains remain decoupled. The remaining discrete degeneracy of the ground state is shown to be protected by a hidden symmetry of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا