ﻻ يوجد ملخص باللغة العربية
Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated $alpha$-NaMnO$_2$, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO$_2$ that emphasizes and provides an explanation for the crucial differences between the two systems. The experimentally verified, much more homogeneous, ground state of the stoichiometric CuMnO$_2$ is attributed to the reduced magnetoelastic competition between the counteracting magnetic-exchange and elastic-energy contributions. The comparison of the two systems additionally highlights the role of disorder and allows an understanding of the puzzling phenomenon of phase separation in uniform antiferromagnets.
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant $d$- and localized $f$- electrons) and intersite (superexchange) correlation $J_{s
With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutro
The anisotropic triangular lattice of the crednerite system Cu(Mn1-xCux)O2 is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measur
We performed neutron single crystal and synchrotron X-ray powder diffraction experiments in order to investigate the magnetic and crystal structures of the conductive layered triangular-lattice antiferromagnet PdCrO2 with a putative spin chirality, w
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne