ﻻ يوجد ملخص باللغة العربية
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant $d$- and localized $f$- electrons) and intersite (superexchange) correlation $J_{se}$ (between localized $f$- electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of $d$- and $f$- electrons are observed to depend strongly on the value of $J$, $J_{se}$ and also on the total number of $d$- electrons ($N_d$).
A numerical diagonalization technique with canonical Monte-Carlo simulation algorithm is used to study the phase transitions from low temperature (ordered) phase to high temperature (disordered) phase of spinless Falicov-Kimball model on a triangular
Thermodynamic properties of the spinless Falicov-Kimball model are studied on a triangular lattice using numerical diagonalization technique with Monte-Carlo simulation algorithm. Discontinuous metal-insulator transition is observed at finite tempera
Ground state properties of spinless, extended Falicov-Kimball model (FKM) on a finite size triangular lattice with orbital magnetic field normal to the lattice are studied using numerical diagonalization and Monte-Carlo simulation methods. We show th
Using exact numerical techniques we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the mod
We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including its dependence on all three frequencies, the full vertex and all reducible vertices. This allows us to calculate the self energy in diagramma