ﻻ يوجد ملخص باللغة العربية
We investigate the statistical mechanics of the periodic one-dimensional Ising chain when the number of positive spins is constrained to be either an even or an odd number. We calculate the partition function using a generalization of the transfer matrix method. On this basis, we derive the exact magnetization, susceptibility, internal energy, heat capacity and correlation function. We show that in general the constraints substantially slow down convergence to the thermodynamic limit. By taking the thermodynamic limit together with the limit of zero temperature and zero magnetic field, the constraints lead to new scaling functions and different probability distributions for the magnetization. We demonstrate how these results solve a stochastic version of the one-dimensional voter model.
We define two classes of colorings that have odd or even chirality on hexagonal lattices. This parity is an invariant in the dynamics of all loops, and explains why standard Monte-Carlo algorithms are nonergodic. We argue that adding the motion of st
The aim of this work is to present a formulation to solve the one-dimensional Ising model using the elementary technique of mathematical induction. This formulation is physically clear and leads to the same partition function form as the transfer mat
The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kag
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised hou
The ground state and thermodynamics of a generalized spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins are calculated exactly using the mapping method based on the decoration-iteration transformation. Ri