ﻻ يوجد ملخص باللغة العربية
Sparse coding (Sc) has been studied very well as a powerful data representation method. It attempts to represent the feature vector of a data sample by reconstructing it as the sparse linear combination of some basic elements, and a $L_2$ norm distance function is usually used as the loss function for the reconstruction error. In this paper, we investigate using Sc as the representation method within multi-instance learning framework, where a sample is given as a bag of instances, and further represented as a histogram of the quantized instances. We argue that for the data type of histogram, using $L_2$ norm distance is not suitable, and propose to use the earth movers distance (EMD) instead of $L_2$ norm distance as a measure of the reconstruction error. By minimizing the EMD between the histogram of a sample and the its reconstruction from some basic histograms, a novel sparse coding method is developed, which is refereed as SC-EMD. We evaluate its performances as a histogram representation method in tow multi-instance learning problems --- abnormal image detection in wireless capsule endoscopy videos, and protein binding site retrieval. The encouraging results demonstrate the advantages of the new method over the traditional method using $L_2$ norm distance.
While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universa
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we p
Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues
The word movers distance (WMD) is a fundamental technique for measuring the similarity of two documents. As the crux of WMD, it can take advantage of the underlying geometry of the word space by employing an optimal transport formulation. The origina
Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. I