ﻻ يوجد ملخص باللغة العربية
We consider analytical formulae that describe the chaotic regions around the main periodic orbit $(x=y=0)$ of the H{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas $2014$) we introduce new variables $(xi, eta)$ in which the product $xieta=c$ (constant) gives hyperbolic invariant curves. These hyperbolae are mapped by a canonical transformation $Phi$ to the plane $(x,y)$, giving Moser invariant curves. We find that the series $Phi$ are convergent up to a maximum value of $c=c_{max}$. We give estimates of the errors due to the finite truncation of the series and discuss how these errors affect the applicability of analytical computations. For values of the basic parameter $kappa$ of the H{e}non map smaller than a critical value, there is an island of stability, around a stable periodic orbit $S$, containing KAM invariant curves. The Moser curves for $c leq 0.32$ are completely outside the last KAM curve around $S$, the curves with $0.32<c<0.41$ intersect the last KAM curve and the curves with $0.41leq c< c_{max} simeq 0.49$ are completely inside the last KAM curve. All orbits in the chaotic region around the periodic orbit $(x=y=0)$, although they seem random, belong to Moser invariant curves, which, therefore define a structure of chaos. Orbits starting close and outside the last KAM curve remain close to it for a stickiness time that is estimated analytically using the series $Phi$. We finally calculate the periodic orbits that accumulate close to the homoclinic points, i.e. the points of intersection of the asymptotic curves from $x=y=0$, exploiting a method based on the self-intersections of the invariant Moser curves. We find that all the computed periodic orbits are generated from the stable orbit $S$ for smaller values of the H{e}non parameter $kappa$, i.e. they are all regular periodic orbits.
In a 2D conservative Hamiltonian system there is a formal integral $Phi$ besides the energy H. This is not convergent near a stable periodic orbit, but it is convergent near an unstable periodic orbit. We explain this difference and we find the conve
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry 1926, Moser 1956, 1958, Giorgilli 2001). The unstable and stable manifolds intersect at an i
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Henon map, w
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate
We investigate analytically and numerically the spatial structure of the non-equilibrium stationary states (NESS) of a point particle moving in a two dimensional periodic Lorentz gas (Sinai Billiard). The particle is subject to a constant external el