ﻻ يوجد ملخص باللغة العربية
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry 1926, Moser 1956, 1958, Giorgilli 2001). The unstable and stable manifolds intersect at an infinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al. 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice to study the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain,the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as i) the order of truncation of the series increases, and ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.
In a 2D conservative Hamiltonian system there is a formal integral $Phi$ besides the energy H. This is not convergent near a stable periodic orbit, but it is convergent near an unstable periodic orbit. We explain this difference and we find the conve
We consider analytical formulae that describe the chaotic regions around the main periodic orbit $(x=y=0)$ of the H{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas $2014$) we introduce new variables $(xi, eta)$ in whi
In this paper we study the breakdown of normal hyperbolicity and its consequences for reaction dynamics; in particular, the dividing surface, the flux through the dividing surface (DS), and the gap time distribution. Our approach is to study these qu
In this work, we investigate the Earth-Moon system, as modeled by the planar circular restricted three-body problem, and relate its dynamical properties to the underlying structure associated with specific invariant manifolds. We consider a range of
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Henon map, w