ﻻ يوجد ملخص باللغة العربية
We present accurate models of the gravitational potential produced by a radially exponential disk mass distribution. The models are produced by combining three separate Miyamoto-Nagai disks. Such models have been used previously to model the disk of the Milky Way, but here we extend this framework to allow its application to disks of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disk treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disk by <0.4% out to 4 disk scalelengths, and <1.9% out to 10 disk scalelengths. We tabulate fitting parameters which facilitate construction of exponential disks for any scalelength, and a wide range of disk thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disk galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disk, and a disky dwarf galaxy.
Using N-body simulations of the Galactic disks, we qualitatively study how the metallicity distributions of the thick and thin disk stars are modified by radial mixing induced by the bar and spiral arms. We show that radial mixing drives a positive v
We analyze the Miyamoto--Nagai substitution, which was introduced over forty years ago to build models of thick disks and flattened elliptical galaxies. Through it, any spherical potential can be converted to an axisymmetric potential via the replace
We analyze the oxygen abundances of a stellar sample representative of the two major Galactic populations: the thin and thick disks. The aim is to investigate the differences between members of the Galactic disks and to contribute to the understandin
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing pre
Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Usin