ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon-dioxide-like Skyrmion controlled by spin-orbit coupling in atomic-molecular Bose-Einstein condensates

209   0   0.0 ( 0 )
 نشر من قبل Chaofei Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. However, there is no study of SOC atomic-molecular BECs so far. Here, we find a novel way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin dependent photoassociation and Raman coupling, which can control the formation and distribution of a new type of topological excitation -- carbon-dioxide-like Skyrmion. This Skyrmion is formed by two half-Skyrmions of molecular BECs coupling with one Skyrmion of atomic BECs, where the two half-Skyrmions locates at both sides of one Skyrmion, which can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments.



قيم البحث

اقرأ أيضاً

298 - Chao-Fei Liu , Wu-Ming Liu 2012
We investigate the fractionalized Skyrmion excitations induced by spin-orbit coupling in rotating and rapidly quenched spin-1 Bose-Einstein condensates. Our results show that the fractionalized Skyrmion excitation depends on the combination of spin-o rbit coupling and rotation, and it originates from a dipole structure of spin which is always embedded in three vortices constructed by each condensate component respectively. When spin-orbit coupling is larger than a critical value, the fractionalized Skyrmions encircle the center with one or several circles to form a radial lattice, which occurs even in the strong ferromagnetic/antiferromagnetic condensates. We can use both the spin-orbit coupling and the rotation to adjust the radial lattice. The realization and the detection of the fractionalized Skyrmions are compatible with current experimental technology.
205 - Qing Sun , Lin Wen , W.-M. Liu 2014
Motivated by a goal of realizing spin-orbit coupling (SOC) beyond one-dimension (1D), we propose and analyze a method to generate an effective 2D SOC in bilayer BECs with laser-assisted inter-layer tunneling. We show that an interplay between the int er-layer tunneling, SOC and intra-layer atomic interaction can give rise to diverse ground state configurations. In particular, the system undergoes a transition to a new type of stripe phase which spontaneously breaks the time-reversal symmetry. Different from the ordinary Rashba-type SOC, a fractionalized skyrmion lattice emerges spontaneously in the bilayer system without external traps. Furthermore, we predict the occurrence of a tetracritical point in the phase diagram of the bilayer BECs, where four different phases merge together. The origin of the emerging different phases is elucidated.
181 - S.-W. Su , S.-C. Gou , Q. Sun 2016
We explore a new way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a {pi} phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half- skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba-type is formed, the ground state represents plane-wave or standing-wave phases depending on the interaction between the atoms. A variational analysis is shown to be in a good agreement with the numerical results.
We investigate phase separation and hidden vortices in spin-orbit coupled ferromagnetic BoseEinstein condensates with rotation and Rabi coupling. The hidden vortices are invisible in density distribution but are visible in phase distribution, which c an carry angular momentum like the ordinary quantized vortices. In the absence of the rotation, we observe the phase separation induced by the spin-orbit coupling and determine the entire phase diagram of the existence of phase separation. For the rotation case, in addition to the phase separation, we demonstrate particularly that the spin-orbit coupling can result in the hidden vortices and hidden vortex-antivortex pairs. The corresponding entire phase diagrams are determined, depending on the interplay of the spin-orbit coupling strength, the rotation frequency, and Rabi frequency, which reveals the critical condition of the occurrence of the hidden vortices and vortex-antivortex pairs. The hidden vortices here are proved to be long-lived in the time scale of experiment by the dynamic analysis. These findings not only provide a clear illustration of the phase separation in spin-orbit coupled spinor Bose-Einstein condensates, but also open a new direction for investigating the hidden vortices in high-spin quantum system.
62 - Ji Li , Yan-Mei Yu , Lin Zhuang 2016
We report Dirac monopoles with polar-core vortex induced by spin-orbit coupling in ferromagnetic Bose-Einstein condensates, which are attached to two nodal vortex lines along the vertical axis. These monopoles are more stable in the time scale of exp eriment and can be detected through directly imaging vortex lines. When the strength of spin-orbit coupling increases, Dirac monopoles with vortex can be transformed into those with square lattice. In the presence of spin-orbit coupling, increasing the strength of interaction can induce a cyclic phase transition from Dirac monopoles with polar-core vortex to those with Mermin-Ho vortex. The spin-orbit coupled Bose-Einstein condensates not only provide a new unique platform for investigating exotic monopoles and relevant phase transitions, but also can preserve stable monopoles after a quadrupole field is turned off.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا