ﻻ يوجد ملخص باللغة العربية
We investigate phase separation and hidden vortices in spin-orbit coupled ferromagnetic BoseEinstein condensates with rotation and Rabi coupling. The hidden vortices are invisible in density distribution but are visible in phase distribution, which can carry angular momentum like the ordinary quantized vortices. In the absence of the rotation, we observe the phase separation induced by the spin-orbit coupling and determine the entire phase diagram of the existence of phase separation. For the rotation case, in addition to the phase separation, we demonstrate particularly that the spin-orbit coupling can result in the hidden vortices and hidden vortex-antivortex pairs. The corresponding entire phase diagrams are determined, depending on the interplay of the spin-orbit coupling strength, the rotation frequency, and Rabi frequency, which reveals the critical condition of the occurrence of the hidden vortices and vortex-antivortex pairs. The hidden vortices here are proved to be long-lived in the time scale of experiment by the dynamic analysis. These findings not only provide a clear illustration of the phase separation in spin-orbit coupled spinor Bose-Einstein condensates, but also open a new direction for investigating the hidden vortices in high-spin quantum system.
We analytically and numerically investigate the ground state of the spin-orbit coupled spin-1 Bose-Einstein condensates in an external parabolic potential. When the spin-orbit coupling strength $kappa$ is comparable with that of the trapping potentia
We investigate the fractionalized Skyrmion excitations induced by spin-orbit coupling in rotating and rapidly quenched spin-1 Bose-Einstein condensates. Our results show that the fractionalized Skyrmion excitation depends on the combination of spin-o
We revisit ground states of spinor Bose-Einstein condensates with a Rashba spin-orbit coupling, and find that votices show up as a direct consequence of spontaneous symmetry breaking into a combined gauge, spin, and space rotation symmetry, which det
The phase diagram of lowest-energy vortices in the polar phase of spin-1 Bose--Einstein condensates is investigated theoretically. Singly quantized vortices are categorized by the local ordered state in the vortex core and three types of vortices are
Motivated by a goal of realizing spin-orbit coupling (SOC) beyond one-dimension (1D), we propose and analyze a method to generate an effective 2D SOC in bilayer BECs with laser-assisted inter-layer tunneling. We show that an interplay between the int