ترغب بنشر مسار تعليمي؟ اضغط هنا

The companion candidate near Fomalhaut - a background neutron star?

150   0   0.0 ( 0 )
 نشر من قبل Ralph Neuhaeuser
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ralph Neuhaeuser




اسأل ChatGPT حول البحث

The directly detected planetary mass companion candidate close to the young, nearby star Fomalhaut is a subject of intense discussion. While the detection of common proper motion led to the interpretation as Jovian-mass companion, later non-detections in the infrared raised doubts. Recent astrometric measurements indicate a belt crossing or highly eccentric orbit for the object, if a companion, making the planetary interpretation potentially even more problematic. In this study we discuss the possibility of Fomalhaut,b being a background object with a high proper motion. By analysing the available photometric and astrometric data of the object, we show that they are fully consistent with a neutron star: Neutron stars are faint, hot (blue), and fast moving. Neutron stars with an effective temperature of the whole surface area being 112,000 K to 126,500 K (with small to negligible extinction) at a distance of roughly 11 pc (best fit) would be consistent with all observables, namely with the photometric detections in the optical, with the upper limits in the infrared and X-rays, as well as with the astrometry (consistent with a distances of 11 pc or more and high proper motion as typical for neutron stars) as well as with non-detection of pulsation (not beamed). We consider the probability of finding an unrelated object or even a neutron star nearby and mostly co-aligned in proper motion with Fomalhaut A and come to the conclusion that this is definitely well possible.



قيم البحث

اقرأ أيضاً

Fomalhaut b is a directly imaged object in the debris disk of the star Fomalhaut. It has been hypothesized to be a planet, however there are issues with the observed colours of the object that do not fit planetary models. An alternative hypothesis is that the object is a neutron star in the near fore- or background of Fomalhauts disk. We test if Fomalhaut b could be a neutron star using X-ray observations with Chandras HRC-I instrument in the energy range of 0.08-10 keV. We do not detect X-ray emission from either Fomalhaut b or the star Fomalhaut itself. Our nondetection corresponds to an upper limit on the X-ray flux of Fomalhaut b of F_X < 1.3e-14 erg/cm/s^2 in the energy range 0.08-10 keV. For the A-type central star Fomalhaut, we derive an X-ray upper limit of L_X < 2e25 erg/s in the energy range 0.08-10 keV. Fomalhaut bs X-ray non-detection constrains the parameter space for a possible neutron star significantly, implying surface temperatures lower than 91000 K and distances closer than 13.3 pc to the solar system. In addition we find that reflected starlight from the central star fits the available optical detections of Fomalhaut b; a smaller planet with a large ring system might explain such a scenario.
The pulsar PSR J1756$-$2251 resides in a relativistic double neutron star (DNS) binary system with a 7.67-hr orbit. We have conducted long-term precision timing on more than 9 years of data acquired from five telescopes, measuring five post-Keplerian parameters. This has led to several independent tests of general relativity (GR), the most constraining of which shows agreement with the prediction of GR at the 4% level. Our measurement of the orbital decay rate disagrees with that predicted by GR, likely due to systematic observational biases. We have derived the pulsar distance from parallax and orbital decay measurements to be 0.73$_{-0.24}^{+0.60}$ kpc (68%) and < 1.2 kpc (95% upper limit), respectively; these are significantly discrepant from the distance estimated using Galactic electron density models. We have found the pulsar mass to be 1.341$pm$0.007 M$_odot$, and a low neutron star (NS) companion mass of 1.230$pm$0.007 M$_odot$. We also determined an upper limit to the spin-orbit misalignment angle of 34{deg} (95%) based on a system geometry fit to long-term profile width measurements. These and other observed properties have led us to hypothesize an evolution involving a low mass loss, symmetric supernova progenitor to the second-formed NS companion, as is thought to be the case for the double pulsar system PSR J0737$-$3039A/B. This would make PSR J1756$-$2251 the second compact binary system providing concrete evidence for this type of NS formation channel.
155 - Marcel Agueros 2009
SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binarie s that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638s companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638s companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.
159 - Ralph Neuhaeuser 2004
We present infrared H- and K-band spectra of a companion candidate 3 north of the young star GSC 08047-00232, a probable member of the nearby young Horologium association. From previously obtained JHK-band colors and the magnitude difference between primary and companion candidate, the latter could well be substellar (Neuhauser et al. 2003) with the spectral type being roughly M7-L9 from the JHK colors (Chauvin et al. 2003). With the H- and K-band spectra now obtained with ISAAC at the VLT, the spectral type of the companion candidate is found to be M6-9.5. Assuming the same age and distance as for the primary star (~35 Myrs, 50 to 85 pc), this yields a mass of ~25 Jupiter masses for the companion, hence indeed substellar. After TWA-5 B and HR 7329 B, this is the third brown dwarf companion around a nearby (up to 100 pc) young (up to 100 Myrs) star. A total of three confirmed brown dwarf companions (any mass, separation above 50 AU) around 79 stars surveyed in three young nearby associations corresponds to a frequency of 6 pm 4 % (with a correction for missing companions which are almost on the same line-of-sight as the primary star instead of being separated well), consistent with the expectation, if binaries have the same mass function as field stars. Hence, it seems that there is no brown dwarf desert at wide separations.
92 - R. P. Mignani 2012
PSR J1811-1736 (P=104 ms) is an old (~1.89 Gyrs) binary pulsar (P_orb=18.8 d) in a highly eccentric orbit (e=0.828) with an unidentified companion. Interestingly enough, the pulsar timing solution yields an estimated companion mass 0.93 M_{odot}<M_C< 1.5 M_{odot}, compatible with that of a neutron star. As such, it is possible that PSR J1811-1736 is a double neutron star (DNS) system, one of the very few discovered so far. This scenario can be investigated through deep optical/infrared (IR) observations. We used J, H, K-band images, obtained as part of the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS), and available in the recent Data Release 9 Plus, to search for its undetected companion of the PSR J1811-1736 binary pulsar. We detected a possible companion star to PSR J1811-1736 within the 3 sigma radio position uncertainty (1.32 arcsec), with magnitudes J=18.61+/-0.07, H=16.65+/-0.03, and K=15.46+/-0.02. The star colours are consistent with either a main sequence (MS) star close to the turn-off or a lower red giant branch (RGB) star, at a pulsar distance of ~5.5 kpc and with a reddening of E(B-V)~4.9. The star mass and radius would be compatible with the constraints on the masses and orbital inclination of the binary system inferred from the mass function and the lack of radio eclipses near superior conjunction. Thus, it is possible that it is the companion to PSR J1811-1736. However, based on the star density in the field, we estimated a quite large chance coincidence probability of ~0.27 between the pulsar and the star, which makes the association unlikely. No other star is detected within the 3 sigma pulsar radio position down to J~20.5, H~19.4$ and K~18.6, which would allow us to rule out a MS companion star earlier than a mid-to-late M spectral type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا