ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared observations of the candidate double neutron star system PSR J1811-1736

93   0   0.0 ( 0 )
 نشر من قبل Roberto Mignani
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. P. Mignani




اسأل ChatGPT حول البحث

PSR J1811-1736 (P=104 ms) is an old (~1.89 Gyrs) binary pulsar (P_orb=18.8 d) in a highly eccentric orbit (e=0.828) with an unidentified companion. Interestingly enough, the pulsar timing solution yields an estimated companion mass 0.93 M_{odot}<M_C<1.5 M_{odot}, compatible with that of a neutron star. As such, it is possible that PSR J1811-1736 is a double neutron star (DNS) system, one of the very few discovered so far. This scenario can be investigated through deep optical/infrared (IR) observations. We used J, H, K-band images, obtained as part of the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS), and available in the recent Data Release 9 Plus, to search for its undetected companion of the PSR J1811-1736 binary pulsar. We detected a possible companion star to PSR J1811-1736 within the 3 sigma radio position uncertainty (1.32 arcsec), with magnitudes J=18.61+/-0.07, H=16.65+/-0.03, and K=15.46+/-0.02. The star colours are consistent with either a main sequence (MS) star close to the turn-off or a lower red giant branch (RGB) star, at a pulsar distance of ~5.5 kpc and with a reddening of E(B-V)~4.9. The star mass and radius would be compatible with the constraints on the masses and orbital inclination of the binary system inferred from the mass function and the lack of radio eclipses near superior conjunction. Thus, it is possible that it is the companion to PSR J1811-1736. However, based on the star density in the field, we estimated a quite large chance coincidence probability of ~0.27 between the pulsar and the star, which makes the association unlikely. No other star is detected within the 3 sigma pulsar radio position down to J~20.5, H~19.4$ and K~18.6, which would allow us to rule out a MS companion star earlier than a mid-to-late M spectral type.



قيم البحث

اقرأ أيضاً

Aims: The binary pulsar PSR J1811-1736 has been identified, since its discovery, as a member of a double neutron star system. Observations of such binary pulsars allow the measurement of general relativistic effects, which in turn lead to information about the orbiting objects and, in a few cases, to tests of theories of gravity. Methods: Regular timing observations have been carried out with three of the largest European radio telescopes involved in pulsar research. The prospects of continued observations were studied with simulated timing data. Pulse scattering times were measured using dedicated observations at 1.4 GHz and at 3.1 GHz, and the corresponding spectral index has also been determined. The possibility of detecting the yet unseen companion as a radio pulsar was also investigated. A study of the natal kick received by the younger neutron star at birth was performed. Results: We present an up to date and improved timing solution for the binary pulsar PSR J1811-1736. One post-Keplerian parameter, the relativistic periastron advance, is measured and leads to the determination of the total mass of this binary system. The pulse profile at 1.4 GHz is heavily broadened by interstellar scattering, limiting the timing precision achievable at this frequency and the measurability of other post-keplerian parameters. Interstellar scattering is unlikely to be the reason for the continued failure to detect radio pulsations from the companion of PSR J1811-1736. The probability distribution that we derive for the amplitude of the kick imparted on the companion neutron star at its birth indicates that the kick has been of low amplitude.
We report the discovery during the Parkes Multibeam Pulsar Survey of PSR J1756-2251, a 28.5 ms pulsar in a relativistic binary system. Subsequent timing observations showed the pulsar to have an orbital period of 7.67 hrs and an eccentricity of 0.18. They also revealed a significant advance of periastron, 2.585+/-0.002 deg./yr. Assuming this is entirely due to general relativity implies a total system mass (pulsar plus companion) of 2.574+/-0.003 solar mass. This mass and the significant orbital eccentricity suggest that this is a double neutron star system. Measurement of the gravitational redshift, gamma, and an evaluation of the Shapiro delay shape, s, indicate a low companion mass of <1.25 solar mass. The expected coalescence time due to emission of gravitational waves is only ~1.7 Gyr substantially less than a Hubble time. We note an apparent correlation between spin period and eccentricity for normally evolving double neutron star systems.
PSR J1829+2456 is a radio pulsar in a relativistic binary system with another neutron star. It has a rotational period of 41 ms and a mildly eccentric ($e = 0.14$) 28-hr orbit. We have continued its observations with the Arecibo radio telescope and h ave now measured the individual neutron star masses of this system. The pulsar and companion masses are $1.306,pm,0.007,M_{odot}$ and $1.299,pm,0.007,M_{odot}$ (2$sigma$ - 95% confidence, unless stated otherwise), respectively. We have also measured the proper motion for this system and used it to estimate a space velocity of 49$^{+77}_{-30}$ km s$^{-1}$ with respect to the local standard of rest. The relatively low values for companion mass, space velocity and orbital eccentricity in this system make it similar to other double neutron star systems in which the second-formed neutron star is thought to have formed in a low-kick, low mass-loss, symmetric supernova.
101 - Matthias U. Kruckow 2020
Aims. The mass discrepancy between the observed population of double neutron star binaries by radio pulsar observations and gravitational-wave observation requires an explanation. Methods. Binary population synthesis calculations are performed, and their results are compared with the radio and the gravitational-wave observations simultaneously. Results. Simulations of binary evolution are used to link different observations of double neutron star binaries with each other. The progenitor of GW190425 is investigated in more detail. A distribution of masses and merger times of the possible progenitors is presented. Conclusions. A mass discrepancy between the radio pulsars in the Milky Way with another neutron star companion and the inferred masses from gravitational-wave observations of those kind of merging systems is naturally found in binary evolution.
We present upper limits on the X-ray emission for three neutron stars. For PSR J1840$-$1419, with a characteristic age of 16.5 Myr, we calculate a blackbody temperature upper limit (at 99% confidence) of $kT_{mathrm{bb}}^{infty}<24^{+17}_{-10}$ eV, m aking this one of the coolest neutron stars known. PSRs J1814$-$1744 and J1847$-$0130 are both high magnetic field pulsars, with inferred surface dipole magnetic field strengths of $5.5times10^{13}$ and $9.4times10^{13}$ G, respectively. Our temperature upper limits for these stars are $kT_{mathrm{bb}}^{infty}<123^{+20}_{-33}$ eV and $kT_{mathrm{bb}}^{infty}<115^{+16}_{-33}$ eV, showing that these high magnetic field pulsars are not significantly hotter than those with lower magnetic fields. Finally, we put these limits into context by summarizing all temperature measurements and limits for rotation-driven neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا