ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its effects on the New Non-Thermal L$_mathrm{i}^mathrm{NT}$-E$_mathrm{peak,i}^mathrm{rest,NT}$ relation

31   0   0.0 ( 0 )
 نشر من قبل Sylvain Guiriec
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reanalyze the prompt emission of two of the brightest Fermi GRBs (080916C and 090926A) with a new model composed of 3 components: (i) a thermal-like component--approximated with a black body (BB)--interpreted as the jet photosphere emission of a magnetized relativistic outflow, (ii) a non-thermal component--approximated with a Band function--interpreted as synchrotron radiation in an optically thin region above the photosphere either from internal shocks or magnetic field dissipation, and (iii) an extra power law (PL) extending from low to high energies likely of inverse Compton origin, even though it remains challenging. Through fine-time spectroscopy down to the 100 ms time scale, we follow the smooth evolution of the various components. From this analysis the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with the Fermi/Large Area Telescope (LAT). Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst. We investigate the effect of the three components on the new time-resolved luminosity-hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal component and its E$_{peak}$ only when the three components are fitted simultaneously to the data (i.e., F$_i^{NT}$-E$_{peak,i}^{NT}$ relation). In addition, this result points toward a universal relation between those two quantities for all GRBs when transposed to the central engine rest frame (i.e., L$_i^{NT}$-E$_{peak,i}^{rest,NT}$ relation).

قيم البحث

اقرأ أيضاً

47 - S. Guiriec 2015
Evidence has been accumulated on the existence of a thermal-like component during the prompt phase of GRBs. This component, often associated with the GRB jets photosphere, is usually subdominant compared to a much stronger non-thermal one. The prompt emission of Fermi GRB 131014A provides a unique opportunity to study this thermal-like component. Indeed, the thermal emission in GRB 131014A is much more intense than in other GRBs and a pure thermal episode is observed during the initial 0.16 s. The thermal-like component cools monotonically during the first second while the non-thermal emission kicks off. The intensity of the non-thermal component progressively increases until being energetically dominant at late time. This is a perfect scenario to disentangle the thermal component from the non-thermal one. A low-energy spectral index of +0.6 better fit the thermal component than the typical index value +1 corresponding to a pure Planck function. The non-thermal component is adequately fitted with a Band function whose low and high energy power law indices are ~-0.7 and <~-3, respectively; this is also statistically equivalent to a cutoff power law with a ~-0.7 index. This is in agreement with our previous results. Finally, a strong correlation is observed between the time-resolved luminosity of the non-thermal component, L$_i^{nTh}$, and its corresponding rest frame spectral peak energy, E$_{peak,i}^{rest,nTh}$, with a slope similar to the one reported in our previous articles. Assuming this relation to be universal for all GRBs we estimate a redshift of ~1.55 for GRB 131014A that is a typical value for long GRBs. These observational results are consistent with the models in which the non-thermal emission is produced well above the GRB jet photosphere but they may also be compatible with other scenarios (e.g., dissipative photosphere) that are not discussed in this article.
From a sample of GRBs detected by the $Fermi$ and $Swift$ missions, we have extracted the minimum variability time scales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variabili ty time scale with pulse parameters such as rise times,determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function (CCF), indicate a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggests a common origin for the production of X-ray flares and the prompt emission in GRBs.
Measuring gamma-ray burst (GRB) properties in their rest-frame is crucial to understand the physics at work in gamma-ray bursts. This can only be done for GRBs with known redshift. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases in the distribution of rest-frame properties of the prompt emission. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well measured prompt emission. 76 of them have a measure of redshift and 14 have no redshift. We estimate their optical brightness with their R magnitude measured two hours after the trigger and compare the rest frame prompt properties of different classes of GRB afterglow brightness. We find that the optical brightness of GRBs in our sample is mainly driven by their intrinsic afterglow luminosity. We show that GRBs with low and high afterglow optical fluxes have similar Epi , Eiso , Liso , indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However we found that the rest frame T90 distribution is not immune to optical selection effect, which favor the selection of GRBs with longer durations. Finally, we note that GRBs in the upper part of the Epi-Eiso plane have fainter optical afterglows and we show that optical selection effects strongly favor the detection of GRBs with bright afterglows located close or below the best-fit Epi-Eiso relation, whose redshift is easily measurable.
Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor (GBM) find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process, or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.
In this work, we present the results obtained from a multi-wavelength campaign, as well as from the public Swift/BAT, XRT, and UVOT data of GRB 060111B for which a bright optical emission was measured with good temporal resolution during the prompt p hase. We identified the host galaxy at R~25 mag; its featureless spectral continuum and brightness, as well as the non-detection of any associated supernova 16 days after the trigger and other independent redshift estimates, converge to z~1-2. From the analysis of the early afterglow SED, we find that non-negligible host galaxy dust extinction, in addition to the Galactic one, affects the observed flux in the optical regime. The extinction-corrected optical-to-gamma-ray spectral energy distribution during the prompt emission shows a flux density ratio $F_{gamma}/F_{opt}$=0.01-0.0001 with spectral index $beta_{gamma,opt}> beta_{gamma}$, strongly suggesting a separate origin of the optical and gamma-ray components. This result is supported by the lack of correlated behavior in the prompt emission light curves observed in the two energy domains. The properties of the prompt optical emission observed during GRB 060111B favor interpretation of this optical light as radiation from the reverse shock in a thick shell limit and in the slow cooling regime. The expected peak flux is consistent with the observed one corrected for the host extinction, likely indicating that the starting time of the TAROT observations is very near to or coincident with the peak time. The estimated fireball initial Lorentz factor is >260-360 at z=1-2, similar to the Lorentz factors obtained from other GRBs. GRB 060111B is a rare, good test case of the reverse shock emission mechanism in both the X-ray and optical energy ranges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا